Nearrings of Functions Determined by a Collection of Invariant Subgroups

被引:0
|
作者
Boudreaux, Matthew G. [1 ]
Cannon, G. Alan [1 ]
Palmer, Taylor R. [1 ]
Troxclair, Tyler C. [1 ]
机构
[1] Southeastern Louisiana Univ, Dept Math, Hammond, LA 70402 USA
关键词
Abelian; Distributive; Center; GENERALIZED CENTERS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (G, +) be a finite group, written additively with identity 0, but not necessarily abelian. Let Gamma = {H-i} be a nonempty collection of nonzero, proper subgroups of G. Then N = {f : G -> G | f (0) = 0 and f(H-i) subset of H-i for all i} is a nearring under pointwise addition and function composition. We determine when N is abelian and distributive, identify the center of N, and find necessary and sufficient conditions for the center to be a subnearring of N.
引用
收藏
页码:459 / 466
页数:8
相关论文
共 50 条