Point-to-Spike Residual Learning for Energy-Efficient 3D Point Cloud Classification

被引:0
|
作者
Wu, Qiaoyun [1 ,2 ,3 ]
Zhang, Quanxiao [1 ,2 ,3 ]
Tan, Chunyu [1 ,2 ,3 ]
Zhou, Yun [1 ,4 ]
Sun, Changyin [1 ,2 ,3 ]
机构
[1] Anhui Univ, Sch Artificial Intelligence, Hefei, Peoples R China
[2] Minist Educ, Engn Res Ctr Autonomous Unmanned Syst Technol, Hefei, Peoples R China
[3] Anhui Prov Engn Res Ctr Unmanned Syst & Intellige, Hefei, Peoples R China
[4] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spiking neural networks (SNNs) have revolutionized neural learning and are making remarkable strides in image analysis and robot control tasks with ultra-low power consumption advantages. Inspired by this success, we investigate the application of spiking neural networks to 3D point cloud processing. We present a point-to-spike residual learning network for point cloud classification, which operates on points with binary spikes rather than floating-point numbers. Specifically, we first design a spatial-aware kernel point spiking neuron to relate spiking generation to point position in 3D space. On this basis, we then design a 3D spiking residual block for effective feature learning based on spike sequences. By stacking the 3D spiking residual blocks, we build the point-to-spike residual classification network, which achieves low computation cost and low accuracy loss on two benchmark datasets, ModelNet40 and ScanObjectNN. Moreover, the classifier strikes a good balance between classification accuracy and biological characteristics, allowing us to explore the deployment of 3D processing to neuromorphic chips for developing energyefficient 3D robotic perception systems.
引用
收藏
页码:6092 / 6099
页数:8
相关论文
共 50 条
  • [1] Time and Memory Efficient 3D Point Cloud Classification
    Ullah, Shan
    Qayyum, Usman
    Choudhry, Aadil Jaleel
    PROCEEDINGS OF 2019 16TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2019, : 521 - 525
  • [2] Point Discriminative Learning for Data-efficient 3D Point Cloud Analysis
    Liu, Fayao
    Lin, Guosheng
    Foo, Chuan-Sheng
    Joshi, Chaitanya K.
    Lin, Jie
    2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV, 2022, : 42 - 51
  • [3] Point-BLS: 3D Point Cloud Classification Combining Deep Learning and Broad Learning System
    Chen, Yixuan
    Fu, Mengyin
    Shen, Kai
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 2810 - 2815
  • [4] Learning point cloud context information based on 3D transformer for more accurate and efficient classification
    Chen, Yiping
    Zhang, Shuai
    Lin, Weisheng
    Zhang, Shuhang
    Zhang, Wuming
    PHOTOGRAMMETRIC RECORD, 2023, 38 (184): : 603 - 616
  • [5] Learning Progressive Point Embeddings for 3D Point Cloud Generation
    Wen, Cheng
    Yu, Baosheng
    Tao, Dacheng
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 10261 - 10270
  • [6] Attention EdgeConv For 3D Point Cloud Classification
    Lin, Yen-Po
    Yeh, Yang-Ming
    Chou, Yu-Chen
    Lu, Yi-Chang
    2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 2018 - 2022
  • [7] Lightweight 3D Point Cloud Classification Network
    Xin, Zihao
    Wang, Hongyuan
    Zhang, Ji
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2022, PT II, 2022, 1701 : 95 - 105
  • [8] Improved Training for 3D Point Cloud Classification
    Paul, Sneha
    Patterson, Zachary
    Bouguila, Nizar
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2022, 2022, 13813 : 253 - 263
  • [9] Deep Learning for 3D Classification Based on Point Cloud with Local Structure
    Song, Yanan
    Li, Xinyu
    Gao, Liang
    2019 2ND IEEE INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SIGNAL PROCESSING (ICICSP), 2019, : 405 - 409
  • [10] Transductive Zero-Shot Learning for 3D Point Cloud Classification
    Cheraghian, Ali
    Rahman, Shafin
    Campbell, Dylan
    Petersson, Lars
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 912 - 922