Pontryagin Differentiable Programming: An End-to-End Learning and Control Framework

被引:0
|
作者
Jin, Wanxin [1 ]
Wang, Zhaoran [2 ]
Yang, Zhuoran [3 ]
Mou, Shaoshuai [1 ]
机构
[1] Purdue Univ, W Lafayette, IN 47907 USA
[2] Northwestern Univ, Evanston, IL 60208 USA
[3] Princeton Univ, Princeton, NJ 08544 USA
关键词
MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper develops a Pontryagin Differentiable Programming (PDP) methodology, which establishes a unified framework to solve a broad class of learning and control tasks. The PDP distinguishes from existing methods by two novel techniques: first, we differentiate through Pontryagin's Maximum Principle, and this allows to obtain the analytical derivative of a trajectory with respect to tunable parameters within an optimal control system, enabling end-to-end learning of dynamics, policies, or/and control objective functions; and second, we propose an auxiliary control system in the backward pass of the PDP framework, and the output of this auxiliary control system is the analytical derivative of the original system's trajectory with respect to the parameters, which can be iteratively solved using standard control tools. We investigate three learning modes of the PDP: inverse reinforcement learning, system identification, and control/planning. We demonstrate the capability of the PDP in each learning mode on different high-dimensional systems, including multi-link robot arm, 6-DoF maneuvering quadrotor, and 6-DoF rocket powered landing.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] End-to-End Differentiable Physics for Learning and Control
    Belbute-Peres, Filipe de A.
    Smith, Kevin A.
    Allen, Kelsey R.
    Tenenbaum, Joshua B.
    Kolter, J. Zico
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [2] End-to-End Differentiable Learning of Protein Structure
    AlQuraishi, Mohammed
    CELL SYSTEMS, 2019, 8 (04) : 292 - +
  • [3] End-to-End Differentiable Adversarial Imitation Learning
    Baram, Nir
    Anschel, Oron
    Caspi, Itai
    Mannor, Shie
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [4] Differentiable MPC for End-to-end Planning and Control
    Amos, Brandon
    Rodriguez, Ivan Dario Jimenez
    Sacks, Jacob
    Boots, Byron
    Kolter, J. Zico
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [5] End-to-End Differentiable Proving
    Rocktaschel, Tim
    Riedel, Sebastian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [6] A Deep Learning Framework for End-to-End Control of Powered Prostheses
    Nuesslein, Christoph P. O.
    Young, Aaron J.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (05) : 3988 - 3994
  • [7] Toward the end-to-end optimization of particle physics instruments with differentiable programming
    Dorigo T.
    Giammanco A.
    Vischia P.
    Aehle M.
    Bawaj M.
    Boldyrev A.
    de Castro Manzano P.
    Derkach D.
    Donini J.
    Edelen A.
    Fanzago F.
    Gauger N.R.
    Glaser C.
    Baydin A.G.
    Heinrich L.
    Keidel R.
    Kieseler J.
    Krause C.
    Lagrange M.
    Lamparth M.
    Layer L.
    Maier G.
    Nardi F.
    Pettersen H.E.S.
    Ramos A.
    Ratnikov F.
    Röhrich D.
    de Austri R.R.
    del Árbol P.M.R.
    Savchenko O.
    Simpson N.
    Strong G.C.
    Taliercio A.
    Tosi M.
    Ustyuzhanin A.
    Zaraket H.
    Reviews in Physics, 2023, 10
  • [8] End-to-End Learning Framework for Space Optical Communications in Non-Differentiable Poisson Channel
    Elfikky, Abdelrahman
    Soltani, Morteza
    Rezki, Zouheir
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (08) : 2090 - 2094
  • [9] Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors
    Jonschkowski, Rico
    Rastogi, Divyam
    Brock, Oliver
    ROBOTICS: SCIENCE AND SYSTEMS XIV, 2018,
  • [10] An End-to-End Differentiable Framework for Contact-Aware Robot Design
    Xu, Jie
    Chen, Tao
    Zlokapa, Lara
    Foshey, Michael
    Matusik, Wojciech
    Sueda, Shinjiro
    Agrawal, Pulkit
    ROBOTICS: SCIENCE AND SYSTEM XVII, 2021,