Closing Lemma for piecewise smooth vector fields with a recurrent point

被引:0
|
作者
Antunes, A. A. [1 ]
Carvalho, T. [2 ]
Gomide, O. M. L. [3 ]
机构
[1] UNESP, IBILCE, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] FFCLRP USP, BR-14040901 Ribeirao Preto, SP, Brazil
[3] IME UFG, BR-74690900 Goiania, GO, Brazil
基金
巴西圣保罗研究基金会;
关键词
Piecewise smooth vector field; Closing lemma; Recurrence;
D O I
10.1016/j.nahs.2024.101495
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we provide a positive answer for the C 0 -Closing Lemma in the context of ndimensional piecewise smooth vector fields governed by the Filippov's rules. So, given a model presenting a nontrivially recurrent point it is possible to consider a C 0 -close perturbation of it possessing a closed trajectory. Also, we conclude the paper proving the existence of a closed orbit around a T -singularity.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] On the Closing Lemma for planar piecewise smooth vector fields
    de Carvalho, Tiago
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (06): : 1174 - 1185
  • [2] On topological entropy of piecewise smooth vector fields
    Antunes, Andre Amaral
    Carvalho, Tiago
    Varao, Regis
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 362 : 52 - 73
  • [3] On piecewise smooth vector fields tangent to nested tori
    Carvalho, Tiago
    Teixeira, Marco A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (07) : 4008 - 4029
  • [4] Symbolic dynamics of planar piecewise smooth vector fields
    Carvalho, Tiago
    Antunes, Andre do Amaral
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 419 : 150 - 174
  • [5] Piecewise smooth vector fields in R3 at infinity
    Pessoa, Claudio
    Tonon, Duval J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 427 (02) : 841 - 855
  • [6] Linearization and Perturbations of Piecewise Smooth Vector Fields with a Boundary Equilibrium
    Tao Li
    Xingwu Chen
    Qualitative Theory of Dynamical Systems, 2023, 22
  • [7] On the Poincaré-Bendixson Formula for Planar Piecewise Smooth Vector Fields
    Li, Shimin
    Liu, Changjian
    Llibre, Jaume
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (06)
  • [8] Minimal sets and chaos in planar piecewise smooth vector fields
    Carvalho, Tiago
    Euzebio, Rodrigo Donizete
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (33) : 1 - 15
  • [9] On the Poincaré–Bendixson Formula for Planar Piecewise Smooth Vector Fields
    Shimin Li
    Changjian Liu
    Jaume Llibre
    Journal of Nonlinear Science, 2023, 33
  • [10] Linearization and Perturbations of Piecewise Smooth Vector Fields with a Boundary Equilibrium
    Li, Tao
    Chen, Xingwu
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (01)