An approach based on performer-attention-guided few-shot learning model for plant disease classification

被引:1
|
作者
Boulila, Wadii [1 ]
机构
[1] Prince Sultan Univ, Robot & Internet Of Things Lab, Riyadh 12435, Saudi Arabia
关键词
Few-shot learning; Performer attention; Plant disease classification; Deep learning;
D O I
10.1007/s12145-024-01339-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The evolution of Few-Shot Learning (FSL) technologies has significantly enhanced the capacity for accurate plant disease classification. This paper introduces an FSL model that integrates the Performer-attention mechanism, marking a novel exploration in the domain of plant disease detection. The proposed approach is based on the Performer-attention mechanism that significantly enhances the model's learning efficiency from limited examples and improves disease classification accuracy. Our model is developed through a two-step process: data preprocessing followed by the application of an attention-guided FSL process. This latter step encompasses patch extraction, performer attention, patch embedding, informative patch selection, masked image modeling, and the FSL application. The proposed techniques ensure the capability to address the issue of sample scarcity while ensuring scalability and efficiency. The efficacy of our approach is validated using the PlantVillage dataset and compared with seven state-of-the-art works. Results demonstrate exceptional accuracy rates of 92.15%, 98.12%, and 99.12% across 1-shot, 5-shot, and 10-shot learning scenarios, respectively. These findings depict the potential of our proposed model for more effective crop health monitoring and promoting sustainable agriculture.
引用
收藏
页码:3797 / 3809
页数:13
相关论文
共 50 条
  • [1] LEARNING SEMANTICS-GUIDED VISUAL ATTENTION FOR FEW-SHOT IMAGE CLASSIFICATION
    Chu, Wen-Hsuan
    Wang, Yu-Chiang Frank
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2979 - 2983
  • [2] Few-Shot Learning approach for plant disease classification using images taken in the field
    Argueso, David
    Picon, Artzai
    Irusta, Unai
    Medela, Alfonso
    San-Emeterio, Miguel G.
    Bereciartua, Arantza
    Alvarez-Gila, Aitor
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 175
  • [3] Attribute- and attention-guided few-shot classification
    Ziquan Wang
    Hui Li
    Zikai Zhang
    Feng Chen
    Jia Zhai
    Multimedia Systems, 2024, 30
  • [4] Attribute- and attention-guided few-shot classification
    Wang, Ziquan
    Li, Hui
    Zhang, Zikai
    Chen, Feng
    Zhai, Jia
    MULTIMEDIA SYSTEMS, 2024, 30 (01)
  • [5] Few-Shot Few-Shot Learning and the role of Spatial Attention
    Lifchitz, Yann
    Avrithis, Yannis
    Picard, Sylvaine
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 2693 - 2700
  • [6] An Incremental Malware Classification Approach Based on Few-Shot Learning
    Qiang, Qian
    Cheng, Mian
    Hu, Yang
    Zhou, Yuan
    Sun, Jiawei
    Ding, Yu
    Qi, Zisen
    Jiao, Fei
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 2682 - 2687
  • [7] A Few-Shot Learning Based Approach to IoT Traffic Classification
    Zhao, Zijian
    Lai, Yingxu
    Wang, Yipeng
    Jia, Wenxu
    He, Huijie
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (03) : 537 - 541
  • [8] Optimization model based on attention mechanism for few-shot image classification
    Liao, Ruizhi
    Zhai, Junhai
    Zhang, Feng
    MACHINE VISION AND APPLICATIONS, 2024, 35 (02)
  • [9] Optimization model based on attention mechanism for few-shot image classification
    Ruizhi Liao
    Junhai Zhai
    Feng Zhang
    Machine Vision and Applications, 2024, 35
  • [10] A fusion spatial attention approach for few-shot learning
    Song, Heda
    Deng, Bowen
    Pound, Michael
    Ozcan, Ender
    Triguero, Isaac
    INFORMATION FUSION, 2022, 81 : 187 - 202