Prediction Reinforced Slope Stability Using Pile Using Adaptive Neuro-Fuzzy Inference System (ANFIS) Model)

被引:0
|
作者
Saim, Noraida Mohd [1 ]
Kasa, Anuar [2 ]
机构
[1] Univ Teknol Mara, Coll Engn, Sch Civil Engn, Shah Alam 40450, Selangor, Malaysia
[2] Univ Kebangsaan Malaysia, Jabatan Kejuruteraan Awam, Fak Kejuruteraan & Alam Bina, Bangi 43600, Selangor, Malaysia
来源
JURNAL KEJURUTERAAN | 2024年 / 36卷 / 02期
关键词
Artificial intelligence; Stabilised Slope stability; Factor of safety; FEM; ANFIS;
D O I
10.17576/jkukm-2024-36(2)-19
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Predictive analysis using artificial intelligence (AI) has transformed the landscape of forecasting analysis in various research fields. The advancements in AI modelling algorithms have enhanced decision -making, trend identification, and process optimization. In geotechnical engineering, AI assists in predicting soil behaviour, structural stability, and slope stability. The AI model discussed in this paper is the Adaptive Neuro-Fuzzy Inference System (ANFIS). In this study, the ANFIS model predicts slope stability by examining the Factor of Safety (FOS) value. Slope stability analyses reinforced with continuous bored pile walls generated by the numerical computation of the finite element method (FEM) in two dimensions (2D) and three dimensions (3D) are compared with the predictions of the ANFIS model. The numerical FEM computations employ PLAXIS 2D and PLAXIS 3D software. Meanwhile, the ANFIS model is designed within the MATLAB software platform involving 112 data samples. With six input pile parameters and one output, the finding shows that the ANFIS model can learn complex non-linear data and accurately predict the output. This is supported by the R 2 values of 0.9771 and 0.9965 from comparing the forecasting output with the 2D and 3D FEM outputs, respectively. Meanwhile, the low RMSE values of 0.0187 and 0.0180 each confirm this.
引用
收藏
页码:591 / 599
页数:9
相关论文
共 50 条
  • [1] PREDICTION OF BIOMASS PELLET DENSITY USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM(ANFIS) METHOD
    Liu, Juan
    Yan, Zhuoyu
    Xu, Mingze
    Liu, Yudi
    Bai, Xuewei
    Xiu, Yonghai
    Wei, Desheng
    [J]. INMATEH-AGRICULTURAL ENGINEERING, 2023, 70 (02): : 181 - 190
  • [2] Performance prediction of a hybrid microgeneration system using Adaptive Neuro-Fuzzy Inference System (ANFIS) technique
    Yang, L.
    Entchev, E.
    [J]. APPLIED ENERGY, 2014, 134 : 197 - 203
  • [3] Seizure Prediction Using Adaptive Neuro-Fuzzy Inference System
    Rabbi, Ahmed F.
    Azinfar, Leila
    Fazel-Rezai, Reza
    [J]. 2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 2100 - 2103
  • [4] LANDSLIDE SUSCEPTIBILITY MAPPING BY USING AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
    Choi, J.
    Lee, Y. K.
    Lee, M. J.
    Kim, K.
    Park, Y.
    Kim, S.
    Goo, S.
    Cho, M.
    Sim, J.
    Won, J. S.
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1989 - 1992
  • [5] Momentum Analysis based Stock Market Prediction using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Agrawal, Samarth
    Jindal, Manoj
    Pillai, G. N.
    [J]. INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 526 - +
  • [6] Prediction of breast dose in chest CT examinations using adaptive neuro-fuzzy inference system (ANFIS)
    Bahareh Moradmand Bahonar
    Vahid Changizi
    Ali Ebrahiminia
    Samaneh Baradaran
    [J]. Physical and Engineering Sciences in Medicine, 2023, 46 : 1071 - 1080
  • [7] Prediction of Biogas Yield from Codigestion of Lignocellulosic Biomass Using Adaptive Neuro-Fuzzy Inference System (ANFIS) Model
    Fajobi, Moses Oluwatobi
    Lasode, Olumuyiwa Ajani
    Adeleke, Adekunle Akanni
    Ikubanni, Peter Pelumi
    Balogun, Ayokunle Olubusayo
    Paramasivam, Prabhu
    [J]. JOURNAL OF ENGINEERING, 2023, 2023
  • [8] Prediction of breast dose in chest CT examinations using adaptive neuro-fuzzy inference system (ANFIS)
    Bahonar, Bahareh Moradmand
    Changizi, Vahid
    Ebrahiminia, Ali
    Baradaran, Samaneh
    [J]. PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2023, 46 (03) : 1071 - 1080
  • [9] Prediction of quality responses in micro-EDM process using an adaptive neuro-fuzzy inference system (ANFIS) model
    Suganthi, X. Hyacinth
    Natarajan, U.
    Sathiyamurthy, S.
    Chidambaram, K.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 68 (1-4): : 339 - 347
  • [10] Prediction of quality responses in micro-EDM process using an adaptive neuro-fuzzy inference system (ANFIS) model
    X. Hyacinth Suganthi
    U. Natarajan
    S. Sathiyamurthy
    K. Chidambaram
    [J]. The International Journal of Advanced Manufacturing Technology, 2013, 68 : 339 - 347