Maximal diameter of integral circulant graphs

被引:0
|
作者
Basic, Milan [1 ]
Ilic, Aleksandar [2 ]
Stamenkovic, Aleksandar [1 ]
机构
[1] Univ Nis, Fac Sci & Math, Visegradska 33, Nish 18108, Serbia
[2] Meta Inc, 1 Hacker Way, Menlo Pk, CA 94025 USA
关键词
Integral circulant graphs; Diameter; Chinese remainder theorem; Quantum networks; NETWORKS; ENERGY; NUMBER;
D O I
10.1016/j.ic.2024.105208
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Integral circulant graphs are proposed as models for quantum spin networks enabling perfect state transfer. Understanding the potential information transfer between nodes in such networks involves calculating the maximal graph diameter. The integral circulant graph ICG(n)(D) has vertex set Z(n) = {0, 1, 2,..., n - 1}, with vertices a and b adjacent if gcd(a - b, n) is an element of D, where D subset of {d : d vertical bar n, 1 <= d < n}. Building on the upper bound 2 vertical bar D vertical bar + 1 for the diameter provided by Saxena, Severini, and Shparlinski, we prove that the maximal diameter of ICG(n)(D) for a given order nwith prime factorization p(1)(alpha 1) center dot center dot center dot p(alpha)(alpha k) is r(n) or r(n) + 1, where r(n) = k +vertical bar{i vertical bar alpha(i) > 1, 1 <= i <= k}vertical bar. We show that a divisor set Dwith vertical bar D vertical bar <= k achieves this bound. We calculate the maximal diameter for graphs of order nand divisor set cardinality t = k, identifying all extremal graphs and improving the previous upper bound. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] On the diameter of integral circulant graphs
    Stevanovic, Dragan
    Petkovic, Marko
    Basic, Milan
    [J]. ARS COMBINATORIA, 2012, 106 : 495 - 500
  • [2] Maximal Diameter on a Class of Circulant Graphs
    Basic, Milan
    Ilic, Aleksandar
    Stamenkovic, Aleksandar
    [J]. ALGEBRAIC INFORMATICS, CAI 2019, 2019, 11545 : 76 - 87
  • [3] The maximal energy of classes of integral circulant graphs
    Sander, J. W.
    Sander, T.
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (13-14) : 2015 - 2029
  • [4] Integral circulant graphs of prime power order with maximal energy
    Sander, J. W.
    Sander, T.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (12) : 3212 - 3232
  • [5] THE EXACT MAXIMAL ENERGY OF INTEGRAL CIRCULANT GRAPHS WITH PRIME POWER ORDER
    Sander, J. W.
    Sander, T.
    [J]. CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2013, 8 (02) : 19 - 40
  • [6] Integral circulant graphs
    So, WS
    [J]. DISCRETE MATHEMATICS, 2006, 306 (01) : 153 - 158
  • [7] On the kernel of integral circulant graphs
    Sander, J. W.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 549 : 79 - 85
  • [8] Integral mixed circulant graphs
    Kadyan, Monu
    Bhattacharjya, Bikash
    [J]. DISCRETE MATHEMATICS, 2023, 346 (01)
  • [9] Minimal spread of integral circulant graphs
    Basic, Milan
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 342 : 317 - 333
  • [10] THE EIGENVALUES AND ENERGY OF INTEGRAL CIRCULANT GRAPHS
    Mollahajiaghaei, Mohsen
    [J]. TRANSACTIONS ON COMBINATORICS, 2012, 1 (03) : 47 - 56