Combinatorial Metabolic Engineering for Improving Betulinic Acid Biosynthesis in Saccharomyces cerevisiae

被引:0
|
作者
Tang, Mei [1 ,2 ]
Xu, Xianhao [1 ,2 ]
Liu, Yanfeng [1 ,2 ]
Li, Jianghua [1 ,2 ]
Du, Guocheng [1 ,2 ]
Lv, Xueqin [1 ,2 ]
Liu, Long [1 ,2 ,3 ]
机构
[1] Jiangnan Univ, Sci Ctr Future Foods, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Minist Educ, Key Lab Carbohydrate Chem & Biotechnol, Wuxi 214122, Peoples R China
[3] JITRI, Inst Future Food & Technol, Yixing 214200, Peoples R China
来源
ACS SYNTHETIC BIOLOGY | 2024年 / 13卷 / 06期
基金
中国国家自然科学基金;
关键词
betulinic acid; Saccharomyces cerevisiae; peroxisomeengineering; synthetic biology; fermentation optimization; MOLECULAR-CLONING; YEAST; DERIVATIVES; EXPRESSION; SYNTHASE;
D O I
10.1021/acssynbio.4c00104
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Betulinic acid (BA) is a lupane-type triterpenoid with potent anticancer and anti-HIV activities. Its great potential in clinical applications necessitates the development of an efficient strategy for BA synthesis. This study attempted to achieve efficient BA biosynthesis in Saccharomyces cerevisiae using systematic metabolic engineering strategies. First, a de novo BA biosynthesis pathway in S. cerevisiae was constructed, which yielded a titer of 14.01 +/- 0.21 mg/L. Then, by enhancing the BA synthesis pathway and dynamic inhibition of the competitive pathway, a greater proportion of the metabolic flow was directed toward BA synthesis, achieving a titer of 88.07 +/- 5.83 mg/L. Next, acetyl-CoA and NADPH supply was enhanced, which increased the BA titer to 166.43 +/- 1.83 mg/L. Finally, another BA synthesis pathway in the peroxisome was constructed. Dual regulation of the peroxisome and cytoplasmic metabolism increased the BA titer to 210.88 +/- 4.76 mg/L. Following fed-batch fermentation process modification, the BA titer reached 682.29 +/- 8.16 mg/L. Overall, this work offers a guide for building microbial cell factories that are capable of producing terpenoids with efficiency.
引用
收藏
页码:1798 / 1808
页数:11
相关论文
共 50 条
  • [1] De novo biosynthesis of betulinic acid in engineered Saccharomyces cerevisiae
    Tang, Shuyan
    Ji, Weiting
    Zhao, Yunqiu
    Zhang, Jian
    Wei, Dongzhi
    Wang, Feng-Qing
    BIOORGANIC CHEMISTRY, 2024, 152
  • [2] Metabolic engineering of Saccharomyces cerevisiae for chelerythrine biosynthesis
    Zhu, Jiawei
    Zhang, Kai
    He, Yuanzhi
    Zhang, Qi
    Ran, Yanpeng
    Tan, Zaigao
    Cui, Li
    Feng, Yan
    MICROBIAL CELL FACTORIES, 2024, 23 (01)
  • [3] Metabolic engineering of taxane biosynthesis in Saccharomyces cerevisiae
    Dahm, P.
    Engels, B.
    Scholz, S.
    Jennewein, S.
    NEW BIOTECHNOLOGY, 2009, 25 : S332 - S333
  • [4] Combinatorial engineering of Saccharomyces cerevisiae for improving limonene production
    Zhang, Xue
    Liu, Xue
    Meng, Yonghui
    Zhang, Lijuan
    Qiao, Jianjun
    Zhao, Guang-Rong
    BIOCHEMICAL ENGINEERING JOURNAL, 2021, 176
  • [5] Combinatorial engineering of betalain biosynthesis pathway in yeast Saccharomyces cerevisiae
    Mahsa Babaei
    Philip Tinggaard Thomsen
    Jane Dannow Dyekjær
    Christiane Ursula Glitz
    Marc Cernuda Pastor
    Peter Gockel
    Johann Dietmar Körner
    Daniela Rago
    Irina Borodina
    Biotechnology for Biofuels and Bioproducts, 16
  • [6] Combinatorial engineering of betalain biosynthesis pathway in yeast Saccharomyces cerevisiae
    Babaei, Mahsa
    Thomsen, Philip Tinggaard
    Dyekjaer, Jane Dannow
    Glitz, Christiane Ursula
    Pastor, Marc Cernuda
    Gockel, Peter
    Korner, Johann Dietmar
    Rago, Daniela
    Borodina, Irina
    BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, 2023, 16 (01):
  • [7] Integrative metabolic and cellular organelle engineering for improving biosynthesis of flavonoid compounds in saccharomyces cerevisiae
    Wang, Chao
    Ma, Wang
    Xu, Luwei
    Wei, Zhiyun
    Tang, Ke
    Zhou, Jingwen
    Chen, Jian
    FOOD BIOSCIENCE, 2024, 60
  • [8] Metabolic engineering of Saccharomyces cerevisiae for the biosynthesis of ethyl crotonate
    Zhang, Guo
    Kang, Xinyue
    Xie, Mingxiao
    Wei, Min
    Zhang, Youdan
    Li, Qian
    Guo, Xuewu
    Wu, Xiaole
    Chen, Yefu
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2022, 168
  • [9] Combinatorial metabolic engineering enables the efficient production of ursolic acid and oleanolic acid in Saccharomyces cerevisiae
    Jin, Ke
    Shi, Xun
    Liu, Jiaheng
    Yu, Wenwen
    Liu, Yanfeng
    Li, Jianghua
    Du, Guocheng
    Lv, Xueqin
    Liu, Long
    BIORESOURCE TECHNOLOGY, 2023, 374
  • [10] Metabolic Engineering of Saccharomyces cerevisiae to Improve Glucan Biosynthesis
    Zhou, Xing
    He, Jing
    Wang, Lingling
    Wang, Yang
    Du, Guocheng
    Kang, Zhen
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2019, 29 (05) : 758 - 764