ON THE COHOMOLOGY OF p-ADIC ANALYTIC SPACES, I: THE BASIC COMPARISON THEOREM

被引:0
|
作者
Colmez, Pierre [1 ]
Niziol, Wieslawa [1 ]
机构
[1] Sorbonne Univ, CNRS, IMJ PRG, F-75005 Paris, France
关键词
SEMI-STABLE REDUCTION; CRYSTALLINE COHOMOLOGY; VARIETIES; PERIODS;
D O I
10.1090/jag/835
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to prove a basic p-adic comparison theorem for smooth rigid analytic and dagger varieties over the algebraic closure C of a p-adic field: p-adic pro-& eacute;tale cohomology, in a stable range, can be expressed as a filtered Frobenius eigenspace of de Rham cohomology (over B + dR ). The key computation is the passage from absolute crystalline cohomology to Hyodo-Kato cohomology and the construction of the related Hyodo-Kato isomorphism. We also "geometrize" our comparison theorem by turning p-adic pro-& eacute;tale and syntomic cohomologies into sheaves on the category Perf C of perfectoid spaces over C and the period morphisms into maps between such sheaves (this geometrization will be crucial in our study of the C s t-conjecture in the sequel to this paper and in the formulation of duality for geometric p-adic pro-& eacute;tale cohomology).
引用
下载
收藏
页数:108
相关论文
共 50 条
  • [1] Cohomology of p-adic analytic groups
    EULER SYSTEMS, 2000, (147): : 205 - 209
  • [2] Cohomology of p-adic analytic curves
    Colmez, Pierre
    Dospinescu, Gabriel
    Niziol, Wieslawa
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2022, 10 (03) : 511 - 655
  • [3] Cohomology of p-adic Stein spaces
    Pierre Colmez
    Gabriel Dospinescu
    Wiesława Nizioł
    Inventiones mathematicae, 2020, 219 : 873 - 985
  • [4] Cohomology of p-adic Stein spaces
    Colmez, Pierre
    Dospinescu, Gabriel
    Niziol, Wieslawa
    INVENTIONES MATHEMATICAE, 2020, 219 (03) : 873 - 985
  • [5] THE COHOMOLOGY OF P-ADIC SYMMETRICAL SPACES
    SCHNEIDER, P
    STUHLER, U
    INVENTIONES MATHEMATICAE, 1991, 105 (01) : 47 - 122
  • [6] A LEFSCHETZ DUALITY THEOREM IN P-ADIC COHOMOLOGY
    YOO, JS
    LUBKIN, S
    AMERICAN JOURNAL OF MATHEMATICS, 1990, 112 (04) : 569 - 594
  • [7] Hard Lefschetz theorem in p-adic cohomology
    Caro, Daniel
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2016, 136 : 225 - 255
  • [8] The p-Adic Analytic Subgroup Theorem Revisited
    Fuchs, C.
    Pham, D. H.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2015, 7 (02) : 143 - 156
  • [9] p-adic Cohomology
    Kedlaya, Kiran S.
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS: ALGEBRAIC GEOMETRY SEATTLE 2005, VOL 80, PTS 1 AND 2, 2009, 80 : 667 - 684
  • [10] On p-adic comparison theorems for rigid analytic varieties, I
    Colmez, Pierre
    Niziol, Wieslawa
    MUENSTER JOURNAL OF MATHEMATICS, 2020, 13 (02): : 445 - 507