Fabrication of NiO/g-C3N4 Z-scheme heterojunction for enhanced photocatalytic degradation of methylene blue dye

被引:6
|
作者
Ahmed, Mahmoud A. [1 ]
Ahmed, Mohamed A. [1 ]
Mohamed, Ashraf A. [1 ]
机构
[1] Ain Shams Univ, Fac Sci, Chem Dept, Cairo 11566, Egypt
关键词
Photocatalytic degradation; Z-Scheme mechanism; Wastewater remediation; CO2; REDUCTION; COMPOSITE; EFFICIENT; G-C3N4; ZNO; NANOCOMPOSITES; REMOVAL; SPHERE; ORANGE;
D O I
10.1016/j.optmat.2024.115339
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanocomposites of nickel oxide (NiO NPs) with varying ratios on graphitic carbon nitride (g-C3N4) were synthesized using an ultrasonic method for use in photocatalytic degradation of methylene blue (MB) dye. Physicochemical techniques, including photoluminescence (PL), diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), Fourier transforms infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopic analysis (XPS) were used to characterize the as -prepared nanocomposites. The impacts of medium pH, catalyst mass, and kinetic parameters on the photocatalytic degradation process were thoroughly explored and optimized. Incorporating 10 % NiO into g-C3N4 caused a 66 % drop in PL peak intensity, improved visible light harvesting in DRS measurements, and enhanced MB dye degradation performance from 33 % with pristine gC3N4 to 91.6 % with NiO/g-C3N4 nanocomposite, at 90 min and pH 8.0. Additionally, TEM analysis revealed the successful synthesis of well -dispersed NiO NPs on g-C3N4. The investigation of scavengers' impact indicated that the Z -scheme photocatalytic mechanism aided in the effective separation of electron -hole pairs generated by visible light irradiation. Superoxide ion was proved to play a crucial role in the photocatalytic degradation of MB catalyzed by the synthesized NiO/g-C3N4 nanocomposite that exhibited remarkable stability in five consecutive cycles, losing only 5 % of its efficacy. This research contributes to the development of efficient and sustainable photocatalytic materials for environmental remediation applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Enhanced the Efficiency of Photocatalytic Degradation of Methylene Blue by Construction of Z-Scheme g-C3N4/BiVO4 Heterojunction
    Zhang, Xiong
    Li, Minjin
    Liu, Cheng
    Zhang, Zhiyong
    Zhang, Fuchun
    Liu, Qiaoping
    [J]. COATINGS, 2021, 11 (09)
  • [2] NiCo/ZnO/g-C3N4 Z-scheme heterojunction nanoparticles with enhanced photocatalytic degradation oxytetracycline
    Wu, Jiao
    Hu, Jingyu
    Qian, Honghong
    Li, Jianjun
    Yang, Ran
    Qu, Lingbo
    [J]. DIAMOND AND RELATED MATERIALS, 2022, 121
  • [3] Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4
    Liu, Xin
    Jin, Ailing
    Jia, Yushuai
    Xia, Tonglin
    Deng, Chenxin
    Zhu, Meihua
    Chen, Changfeng
    Chen, Xiangshu
    [J]. APPLIED SURFACE SCIENCE, 2017, 405 : 359 - 371
  • [4] Fabrication of direct Z-scheme heterojunction of S doped g-C3N4/Ag/AgI for efficient dye degradation
    Khan, Aftab Aslam Parwaz
    Sonu
    Sudhaik, Anita
    Raizada, Pankaj
    Danish, Mohd
    Khan, Anish
    Kamal, Tahseen
    Rahman, Mohammed M.
    Asiri, Abdullah M.
    Singh, Pardeep
    [J]. MATERIALS LETTERS, 2024, 357
  • [5] Facile fabrication of CdS/Cu-doped g-C3N4 heterojunction for enhanced photocatalytic degradation of methylene blue
    Li, Cuilin
    Zhai, Qianqian
    Liu, Wenqing
    Yang, Quanlu
    Li, Qiao
    Zhang, Xinghui
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (23)
  • [6] Facile fabrication of CdS/Cu-doped g-C3N4 heterojunction for enhanced photocatalytic degradation of methylene blue
    Cuilin Li
    Qianqian Zhai
    Wenqing Liu
    Quanlu Yang
    Qiao Li
    Xinghui Zhang
    [J]. Journal of Materials Science: Materials in Electronics, 2023, 34
  • [7] Fabrication and Enhanced Photocatalytic Activity of p–n Heterojunction CoWO4/g-C3N4 Photocatalysts for Methylene Blue Degradation
    Guangzhuang Sun
    Qizhi Gao
    Shengnan Tang
    Runze Ling
    Yang Cai
    Chuan Yu
    Hao Liu
    Huajing Gao
    Xinxin Zhao
    Anrong Wang
    [J]. Journal of Electronic Materials, 2022, 51 : 3205 - 3215
  • [8] Fabrication of g-C3N4/Y-TiO2 Z-scheme heterojunction photocatalysts for enhanced photocatalytic activity
    Pak, SongSik
    Ri, KwangChol
    Xu, Chenmin
    Ji, Qiuyi
    Sun, Dunyu
    Qi, Chengdu
    Yang, Shaogui
    He, Huan
    Pak, MyongNam
    [J]. NEW JOURNAL OF CHEMISTRY, 2021, 45 (42) : 19903 - 19916
  • [9] Enhanced visible light photocatalytic degradation of rhodamine B by Z-scheme CuWO4/g-C3N4 heterojunction
    Shu Zhou
    Yinke Wang
    Guoqing Zhao
    Caifeng Li
    Lukai Liu
    Feipeng Jiao
    [J]. Journal of Materials Science: Materials in Electronics, 2021, 32 : 2731 - 2743
  • [10] Enhanced visible light photocatalytic degradation of rhodamine B by Z-scheme CuWO4/g-C3N4 heterojunction
    Zhou, Shu
    Wang, Yinke
    Zhao, Guoqing
    Li, Caifeng
    Liu, Lukai
    Jiao, Feipeng
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (03) : 2731 - 2743