Yield prediction models for some wheat varieties with satellite-based drought indices and machine learning algorithms

被引:0
|
作者
Akcapinar, Muhammed Cem [1 ]
Cakmak, Belgin [2 ]
机构
[1] Turkish State Meteorol Serv, Dept Climate & Agr Meteorol, Ankara, Turkiye
[2] Ankara Univ, Dept Agr Struct & Irrigat, Ankara, Turkiye
关键词
drought; machine learning; satellite-based indices; wheat; yield prediction; Bl & eacute; s & eacute; cheresse; pr & eacute; vision du rendement; indices satellitaires; apprentissage automatique;
D O I
10.1002/ird.2989
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
In recent years, frequent drought events in Konya, one of T & uuml;rkiye's most important cereal production centres, have led to increased pressure on water and soil resources, resulting in yield losses, particularly in wheat production. Alternative yield prediction models, especially those that play a crucial role in agricultural import-export planning in the region, are important for economic contributions and the development of early warning systems. In this context, the aim of this study is to develop models that can be used in the yield prediction of wheat varieties widely grown in the Konya Alt & imath;nova region. Agricultural drought indices obtained from Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST) products of the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) satellite were used to obtain model inputs. These indices are the Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Vegetation Health Index (VHI) and Vegetation Supply Water Index (VSWI). In obtaining the input parameters for the models, the growth periods of the varieties in the region were also considered. Using various machine learning algorithms, 21 yield prediction models for Bayraktar-2000, 12 for K & imath;z & imath;ltan-91 and 8 for Bezostaya-1 were presented as alternatives, with model performances (coefficient of determination, R2) ranging between 0.74 and 0.97, 0.73 and 0.96, and 0.69 and 0.87, respectively. & Agrave; Konya, l'un des plus importants centres de production c & eacute;r & eacute;ali & egrave;re de Turquie, les & eacute;pisodes de s & eacute;cheresse, fr & eacute;quents ces derni & egrave;res ann & eacute;es, ont accru la pression sur les ressources en eau et en sol et entra & icirc;n & eacute; des pertes de rendement des cultures, en particulier du bl & eacute;. Les mod & egrave;les alternatifs de pr & eacute;vision des rendements, qui jouent un r & ocirc;le important notamment dans la planification des importations et exportations agricoles dans la r & eacute;gion, sont importants en termes de contribution & eacute;conomique et de d & eacute;veloppement de syst & egrave;mes d'alerte pr & eacute;coce. Dans ce contexte, l'objectif de cette & eacute;tude & eacute;tait de d & eacute;velopper des mod & egrave;les qui peuvent & ecirc;tre utilis & eacute;s dans la pr & eacute;diction du rendement des vari & eacute;t & eacute;s de bl & eacute; communes dans la r & eacute;gion d'Alt & imath;nova de la province de Konya en utilisant les indices de s & eacute;cheresse agricole Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Vegetation Health Index (VHI), and Vegetation Supply Water Index (VSWI) obtenus & agrave; partir des produits Normalized Difference Vegetation Index (NDVI) et Land Surface Temperature (LST) du satellite Terra MODIS (Moderate Resolution Imaging Spectroradiometer). Lors de l'obtention des param & egrave;tres d'entr & eacute;e du mod & egrave;le, les p & eacute;riodes de croissance des vari & eacute;t & eacute;s dans la r & eacute;gion ont & eacute;galement & eacute;t & eacute; prises en consid & eacute;ration. & Agrave; l'issue de l'& eacute;tude, 21 mod & egrave;les de pr & eacute;vision du rendement pour Bayraktar-2000, 12 pour K & imath;z & imath;ltan-91 et 8 pour Bezostaya-1 ont & eacute;t & eacute; pr & eacute;sent & eacute;s comme des alternatives avec des performances de mod & egrave;le (R2) comprises entre 0,736-0,973, 0,733-0,956 et 0,686-0,874, respectivement.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Enhancing Crop Yield Prediction Utilizing Machine Learning on Satellite-Based Vegetation Health Indices
    Pham, Hoa Thi
    Awange, Joseph
    Kuhn, Michael
    Nguyen, Binh Van
    Bui, Luyen K.
    [J]. SENSORS, 2022, 22 (03)
  • [2] Development of machine learning models for estimating wheat biophysical variables using satellite-based vegetation indices
    Jamali, Mohsen
    Bakhshandeh, Esmaeil
    Yeganeh, Bijan
    Ozdogan, Mutlu
    [J]. ADVANCES IN SPACE RESEARCH, 2024, 73 (01) : 498 - 513
  • [3] Yield prediction with machine learning algorithms and satellite images
    Sharifi, Alireza
    [J]. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2021, 101 (03) : 891 - 896
  • [4] Comparison of meteorological and satellite-based drought indices as yield predictors of Spanish cereals
    Garcia-Leon, David
    Contreras, Sergio
    Hunink, Johannes
    [J]. AGRICULTURAL WATER MANAGEMENT, 2019, 213 : 388 - 396
  • [5] New Regression Models for Prediction of Grain Yield Anomalies from Satellite-Based Vegetation Health Indices
    Menzhulin, Gennady
    Shamshurina, Natalya
    Pavlovsky, Artyom
    Kogan, Felix
    [J]. USE OF SATELLITE AND IN-SITU DATA TO IMPROVE SUSTAINABILITY, 2011, : 105 - +
  • [6] An evaluation of satellite-based drought indices on a regional scale
    Sur, Chanyang
    Hur, Jiwon
    Kim, Kyoungjun
    Choi, Woojung
    Choi, Minha
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (22) : 5593 - 5612
  • [7] Machine learning algorithms for merging satellite-based precipitation products and their application on meteorological drought monitoring over Kenya
    Ghosh, Suravi
    Lu, Jianzhong
    Das, Priyanko
    Zhang, Zhenke
    [J]. CLIMATE DYNAMICS, 2024, 62 (01) : 141 - 163
  • [8] EVALUATION AND COMPARISON OF DROUGHT TOLERANCE IN SOME WHEAT VARIETIES BASED ON SELECTION INDICES
    Dunareanu, Ioana Claudia
    Bonea, Dorina
    [J]. SCIENTIFIC PAPERS-SERIES MANAGEMENT ECONOMIC ENGINEERING IN AGRICULTURE AND RURAL DEVELOPMENT, 2023, 23 (02) : 223 - 228
  • [9] Machine learning algorithms for merging satellite-based precipitation products and their application on meteorological drought monitoring over Kenya
    Suravi Ghosh
    Jianzhong Lu
    Priyanko Das
    Zhenke Zhang
    [J]. Climate Dynamics, 2024, 62 : 141 - 163
  • [10] Prediction of Soybean Yield in Jilin Based on Diverse Machine Learning Algorithms and Meteorological Disaster Indices
    Song, Lifang
    Song, Ruixiang
    Wang, Chengcheng
    Zhang, Xinjing
    Li, Yunfeng
    Li, Lei
    Li, Mingyan
    Zhang, Meng
    [J]. INTERNATIONAL JOURNAL OF MULTIPHYSICS, 2024, 18 (02) : 278 - 287