KEAP1-NRF2 system regulates age-related spermatogenesis dysfunction

被引:1
|
作者
Kuribayashi, Sohei [1 ]
Fukuhara, Shinichiro [1 ]
Kitakaze, Hiroaki [1 ]
Tsujimura, Go [1 ]
Imanaka, Takahiro [1 ]
Okada, Koichi [1 ]
Ueda, Norichika [1 ]
Takezawa, Kentaro [1 ]
Katayama, Kotoe [2 ]
Yamaguchi, Rui [3 ,4 ]
Matsuda, Koichi [5 ]
Nonomura, Norio [1 ]
机构
[1] Osaka Univ, Grad Sch Med, Dept Urol, 2-2 Yamadaoka, Suita, Osaka 5650871, Japan
[2] Univ Tokyo, Inst Med Sci, Human Genome Ctr, Lab Sequence Anal, Tokyo, Japan
[3] Aichi Canc Ctr Res Inst, Div Canc Syst Biol, Nagoya, Japan
[4] Univ Tokyo, Inst Med Sci, Human Genome Ctr, Div Hlth Med Intelligence, Tokyo, Japan
[5] Univ Tokyo, Grad Sch Frontier Sci, Dept Computat Biol & Med Sci, Lab Clin Genome Sequencing, Tokyo, Japan
关键词
aging; KEAP1-NRF2; male infertility; oxidative stress; BARDOXOLONE-METHYL; MALE-FERTILITY; IMPACT;
D O I
10.1002/rmb2.12595
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
Purpose: The average fatherhood age has been consistently increasing in developed countries. Aging has been identified as a risk factor for male infertility. However, its impact on various mechanisms remains unclear. This study focused on the KEAP1-NRF2 oxidative stress response system, by investigating the relationship between the KEAP1-NRF2 system and age-related changes in spermatogenesis. Methods: For examination of age-related changes, we used 10-, 30-, 60-, and 90-week-old mice to compare sperm count, sperm motility, and protein expression. For assessment of Keap1 inhibition, 85-week-old C57BL/6J mice were randomly assigned to the following groups: control and bardoxolone methyl (KEAP1 inhibitor). Whole-exome sequencing of a Japanese cohort of patients with non-obstructive azoospermia was performed for evaluating. Results: Sperm count decreased significantly with aging. Oxidative stress and KEAP1 expression in the testes were elevated. Inhibition of KEAP1 in aging mice significantly increased sperm count compared with that in the control group. In the human study, the frequency of a missense-type SNP (rs181294188) causing changes in NFE2L2 (NRF2) activity was significantly higher in patients with non-obstructive azoospermia than in healthy control group. Conclusions: The KEAP1-NRF2 system, an oxidative stress response system, is associated with age-related spermatogenesis dysfunction.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] The KeAP1-NRF2 System in Cancer
    Taguchi, Keiko
    Yamamoto, Masayuki
    FRONTIERS IN ONCOLOGY, 2017, 7
  • [2] The KEAP1-NRF2 System and Neurodegenerative Diseases
    Uruno, Akira
    Yamamoto, Masayuki
    ANTIOXIDANTS & REDOX SIGNALING, 2023, 38 (13) : 974 - 988
  • [3] Molecular basis of the Keap1-Nrf2 system
    Suzuki, Takafumi
    Yamamoto, Masayuki
    FREE RADICAL BIOLOGY AND MEDICINE, 2015, 88 : 93 - 100
  • [4] The Keap1-Nrf2 system and diabetes mellitus
    Uruno, Akira
    Yagishita, Yoko
    Yamamoto, Masayuki
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2015, 566 : 76 - 84
  • [5] THE KEAP1-NRF2 SYSTEM IN HEALTH AND DISEASE
    Yamamoto, Masayuki
    FREE RADICAL BIOLOGY AND MEDICINE, 2023, 201 : 1 - 2
  • [6] The KEAP1-NRF2 System and Esophageal Cancer
    Hirose, Wataru
    Oshikiri, Hiroyuki
    Taguchi, Keiko
    Yamamoto, Masayuki
    CANCERS, 2022, 14 (19)
  • [7] Proteasome Dysfunction Activates Autophagy and the Keap1-Nrf2 Pathway
    Kageyama, Shun
    Sou, Yu-shin
    Uemura, Takefumi
    Kametaka, Satoshi
    Saito, Tetsuya
    Ishimura, Ryosuke
    Kouno, Tsuguka
    Bedford, Lynn
    Mayer, R. John
    Lee, Myung-Shik
    Yamamoto, Masayuki
    Waguri, Satoshi
    Tanaka, Keiji
    Komatsu, Masaaki
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (36) : 24944 - 24955
  • [8] Keap1-Nrf2 system regulates cell fate determination of hematopoietic stem cells
    Murakami, Shohei
    Shimizu, Ritsuko
    Romeo, Paul-Henri
    Yamamoto, Masayuki
    Motohashi, Hozumi
    GENES TO CELLS, 2014, 19 (03) : 239 - 253
  • [9] The Keap1-Nrf2 system as an in vivo sensor for electrophiles
    Uruno, Akira
    Motohashi, Hozumi
    NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 2011, 25 (02): : 153 - 160
  • [10] The KEAP1-NRF2 System in Healthy Aging and Longevity
    Matsumaru, Daisuke
    Motohashi, Hozumi
    ANTIOXIDANTS, 2021, 10 (12)