Additive engineering strategies for improved interfacial stability in lithium metal batteries

被引:2
|
作者
Ryu, Kun [1 ,2 ]
Lee, Kyungbin [1 ]
Lim, Jeonghoon [3 ]
Lee, Michael J. [1 ]
Kim, Keun-Hee [1 ]
Lee, Un Hwan [4 ]
Rinkel, Bernardine L. D. [3 ]
Kim, Kyungmo [1 ]
Kim, Soohyun [5 ]
Kim, Dayoung [5 ]
Shin, Dongsek [5 ]
McCloskey, Bryan [3 ]
Kang, Joonhee [4 ]
Lee, Seung Woo [1 ]
机构
[1] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[2] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[3] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[4] Pusan Natl Univ, Dept Nanoenergy Engn, Busan 46241, South Korea
[5] LG Energy Solut Ltd, LG Sci Pk, Seoul 07796, South Korea
基金
美国国家科学基金会;
关键词
ELECTROLYTE; CATHODE;
D O I
10.1039/d4ee02479f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrolyte engineering is crucial for advancing lithium (Li) metal batteries (LMBs). Currently, unstable electrode-electrolyte interfaces limit the stable cycling of LMBs. Here, we introduce an additive engineering approach aimed at strengthening these electrode-electrolyte interfaces by incorporating the ionic additive tetrabutylammonium tetrafluoroborate into a low-concentration tetrahydrofuran ether electrolyte. Our findings reveal that tetrafluoroborate anions minimize corrosion and Li inventory loss. In addition, bulky tetrabutylammonium cations adsorbed onto the anode surface enable uniform and compact Li electrodeposition. This fluorinating and dendrite-suppressing mechanism supports stable high-current and high-capacity operations. Without altering the electrolyte solvation structure, the functional additive forms a robust interface with enhanced charge transport kinetics, specifically a stable solid-electrolyte interphase and cathode-electrolyte interphase. The designed electrolyte demonstrates 150 cycles 82.4% capacity retention in full cells employing 4 mA h cm-2 high-nickel cathodes under practical testing conditions (N/P = 1.75, E/C = 5.1 g A h-1). Additive engineering in low-concentration ether electrolytes enhances the electrode-electrolyte interfacial stability, enabling the stable cycling of high-energy, cost-effective lithium metal batteries.
引用
收藏
页码:7772 / 7781
页数:10
相关论文
empty
未找到相关数据