Underground hydrogen (H2) storage is a long-term, clean, and sustainable solution for a large-scale H2 economy. Hydrogen geo-storage strategies in saline aquifers have gained considerable attention regarding meeting energy demand challenges. Rock-fluid interaction and interfacial tension (IFT) of any given gas determine the fluid flow, storage potential, and containment security. However, the literature lacks sufficient information on the IFT of H2brine systems at various thermophysical and salinity conditions. This study experimentally measures density using an Anton Paar DMA-HP densitometer and IFT with a Kruss drop shape analyzer (DSA-100). The density and IFT measurements of H2-brine systems were evaluated at various pressures (0.1, 5, 10, 15, and 20 MPa), temperatures (25, 50, and 70 degrees C), and salinities, including deionized water, seawater (mixed brine), and individual brines (NaCl, KCl, MgCl2, CaCl2, and Na2SO4) at 1 and 3 M concentrations. The results indicate a significant decrease in H2-brine IFT by the increasing temperature at a constant pressure and salinity. A slightly decreasing trend is observed when the H2-brine IFT is plotted against pressure, maintaining a constant salinity and temperature. Increasing the salinity of the salt solutions (from 1 to 3 M), irrespective of the salt type, increases the H2-brine IFT at a constant pressure and temperature. Due to the screening effect, the monovalent and divalent cations behave differently in H2. To the best of our knowledge, this comprehensive dataset for H2-brine IFT is presented for the first time. The provided data are crucial for reservoir simulations and determining the H2 geostorage potential under natural reservoir conditions.