Novel flexible aromatic Cu3 metal-organic π-cluster for electrocatalytic CO2 reduction reaction

被引:2
|
作者
Yan, Yayu [1 ,2 ,4 ]
Chen, Jiali [1 ,2 ,4 ]
Wang, Zirui [2 ,3 ,4 ]
Fu, Jianghong [1 ,2 ,4 ]
Zhang, Haixia [2 ]
Chen, Shumei [1 ]
Li, Qiaohong [2 ]
Zhang, Jian [2 ]
机构
[1] Fuzhou Univ, Coll Chem, Fuzhou 350108, Fujian, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
[3] Shanghai Tech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[4] Univ Chinese Acad Sci, Fujian Coll, Fuzhou 350002, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrocatalytic; CO2RR; Metal-organic t-cluster; Flexible aromaticity; INDEPENDENT CHEMICAL-SHIFTS; FRAMEWORKS;
D O I
10.1016/j.surfin.2024.104349
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Producing Cn products through electrocatalytic CO2 reduction reaction (CO2RR) is of great significance in addressing the global warming crisis. Organic-inorganic hybrid catalysts, characterized by precise and controllable active sites and metal-ligand synergistic interactions, can enhance the reaction activity and stability of Cubased catalysts. Herein, based on density functional theory (DFT), a novel flexible aromatic Cu3 metal-organic t-cluster (Cu3-t cluster) was constructed, consisting of triple-atom active centers and pentalyne ligands. During the catalytic CO2RR process, the adsorption of H can promote the activation of CO2, this converts the competing hydrogen evolution reaction (HER) into promoting CO2RR. Enhanced aromaticity of its cluster core is credited with stabilizing the coadsorption of H and CO2 (H* + CO2*), consequently lowering the reaction free energy of the CO2 activation process. Research has shown that Cu3-t cluster have high catalytic activity for electrocatalytic CO2 generation of C2H4. Considering the solvation effect, the limit potential of this reaction is -0.60 V. Furthermore, the reaction free energies suggest that the Cu3-t cluster is more inclined to yield C2H4(g) products via COCO* coupling. Moreover, the high CO coverage at the triple-atom active centers not only makes it more challenging for this cluster to adsorb H, but also reduces the energy barrier of the COCO* coupling reaction. In the entire reaction pathway of C2H4(g), there exhibits dynamic self-adaptive behavior in the bond lengths and bond angles of the three Cu atoms in the cluster core, leading to fluctuations in aromaticity. The flexibility and aromaticity changes in this structure enable the Cu3-t cluster to better stabilize intermediates. This work provides theoretical guidance for the application of metal-organic t-clusters, accelerates the screening of catalysts for CO2RR, and provides powerful theoretical guidance for the structure-activity relationships between aromaticity and catalytic activity.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Monodisperse Cu Nanoparticles Supported on a Versatile Metal-Organic Framework for Electrocatalytic Reduction of CO2
    Sikma, R. Eric
    Reyes, Raphael A.
    Richards, Danielle
    Kotula, Paul G.
    Meyerson, Melissa L.
    Schafer, David P.
    Roman-Kustas, Jessica K.
    Percival, Stephen J.
    Gallis, Dorina F. Sava
    ACS APPLIED NANO MATERIALS, 2024,
  • [2] Metal-Organic Frameworks for Electrocatalytic CO2 Reduction: Developments and Prospects
    Patel, Shae
    McKelvey, Kim
    Liu, Lujia
    CHEMISTRY OF MATERIALS, 2024, 36 (20) : 10054 - 10087
  • [3] Metal-Organic Frameworks for Electrocatalytic CO2 Reduction into Formic Acid
    Xie, Wen-Jun
    Mulina, Olga M.
    Terent'ev, Alexander O.
    He, Liang-Nian
    CATALYSTS, 2023, 13 (07)
  • [4] [Cu3(BTC)2]: A Metal-Organic Framework Catalyst for the Friedlander Reaction
    Perez-Mayoral, Elena
    Cejka, Jiri
    CHEMCATCHEM, 2011, 3 (01) : 157 - 159
  • [5] Novel electrorheological properties of a metal-organic framework Cu3(BTC)2
    Liu, Ying Dan
    Kim, Jun
    Ahn, Wha-Seung
    Choi, Hyoung Jin
    CHEMICAL COMMUNICATIONS, 2012, 48 (45) : 5635 - 5637
  • [6] Preparation of metal-organic frameworks Cu3(BTC)2 with amino-functionalization for CO2 adsorption
    Lu X.-T.
    Pu Y.-F.
    Li L.
    Zhao N.
    Wang F.
    Xiao F.-K.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2019, 47 (03): : 338 - 343
  • [7] The Origin of the Electrocatalytic Activity for CO2 Reduction Associated with Metal-Organic Frameworks
    Zhang, Ying
    Zhang, Xiaolong
    Zhu, Yinlong
    Qian, Binbin
    Bond, Alan M.
    Zhang, Jie
    CHEMSUSCHEM, 2020, 13 (10) : 2552 - 2556
  • [8] Preparation of amino-functionalized metal-organic frameworks Cu3(BTC)2 for CO2 adsorption
    Lu, Xueting
    Wang, Feng
    Xiao, FuKui
    Li, Lei
    Zhao, Ning
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [9] Nanozyme Based on Porphyrinic Metal-Organic Framework for Electrocatalytic CO2 Reduction
    Lee, Junghye
    Choi, Hansaem
    Mun, Jinhong
    Jin, Eunji
    Lee, Soochan
    Nam, Joohan
    Umer, Muhammad
    Cho, Jaeheung
    Lee, Geunsik
    Kwon, Youngkook
    Choe, Wonyoung
    SMALL STRUCTURES, 2023, 4 (01):
  • [10] Indigenous designed metal-organic framework for electrocatalytic reduction of CO2—a review
    S Surya Babu
    Abinaya Stalinraja
    Takumi Nagasaka
    Keerthiga Gopalram
    Ionics, 2024, 30 : 2881 - 2900