Integration of negative-order modified Korteweg-de Vries equation with an integral source

被引:0
|
作者
Urazboev, Gayrat Urazalievich [1 ]
Khasanov, Muzaffar Masharipovich [1 ]
Ismoilov, Okhunjon Bahram Ugli [2 ]
机构
[1] Urgench State Univ, Dept Appl Math & Math Phys, Ul Kh Alimdjan 14, Urgench 220100, Uzbekistan
[2] Acad Sci Uzbek, VI Romanovskiy Inst Math, Khorezm Branch, Dept Differential Equat, Ul Kh Alimdjan 14, Urgench 220100, Uzbekistan
关键词
modified Korteweg-de Vries equation of negative order; Dirac system; inverse spectral problem; Dubrovin-Trubowitz system of equations; trace formulas; SELF-CONSISTENT SOURCE; MULTIPLE SOLITON; SCHRODINGER; KDV;
D O I
10.35634/2226-3594-2024-63-06
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, it is shown that the modified Korteweg-de Vries (mKdV) equation of negative order with an integral source can be integrated by the method of the inverse spectral problem. The main result of this work is the derivation of the evolution of the spectral data of the Dirac system with a periodic potential associated with the solution of the negative-order modified Korteweg-de Vries equation with an integral source. The obtained results allow us to apply the inverse problem method to solve the negative-order modified Korteweg-de Vries equation with an integral source.
引用
收藏
页码:80 / 90
页数:11
相关论文
共 50 条
  • [1] Integration of negative-order modified Korteweg-de Vries equation in a class of periodic functions
    Urazboev, G. U.
    Yakhshimuratov, A. B.
    Khasanov, M. M.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 217 (02) : 1689 - 1699
  • [2] Negative-order Korteweg-de Vries equations
    Qiao, Zhijun
    Fan, Engui
    PHYSICAL REVIEW E, 2012, 86 (01):
  • [3] Integration of negative-order modified Korteweg–de Vries equation in a class of periodic functions
    G. U. Urazboev
    A. B. Yakhshimuratov
    M. M. Khasanov
    Theoretical and Mathematical Physics, 2023, 217 : 1689 - 1699
  • [4] Nonlocal Symmetry and Backlund Transformation of a Negative-Order Korteweg-de Vries Equation
    Fei, Jinxi
    Cao, Weiping
    Ma, Zhengyi
    COMPLEXITY, 2019, 2019
  • [5] Integration of the Matrix Modified Korteweg-de Vries Equation with an Integral-Type Source
    G. U. Urazboev
    U. A. Xoitmetov
    A. K. Babadjanova
    Theoretical and Mathematical Physics, 2020, 203 : 734 - 746
  • [6] Integration of the Matrix Modified Korteweg-de Vries Equation with an Integral-Type Source
    Urazboev, G. U.
    Xoitmetov, U. A.
    Babadjanova, A. K.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 203 (03) : 734 - 746
  • [7] Quasiperiodic Solutions of the Negative-Order Korteweg-De Vries Hierarchy
    Jinbing Chen
    Theoretical and Mathematical Physics, 2019, 199 : 798 - 822
  • [8] Integration of the modified Korteweg-de Vries hierarchy with an integral type of source
    Ye, S
    Zeng, YB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (21): : L283 - L291
  • [9] QUASIPERIODIC SOLUTIONS OF THE NEGATIVE-ORDER KORTEWEG-DE VRIES HIERARCHY
    Chen, Jinbing
    THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 199 (03) : 798 - 822
  • [10] Two Kinds of New Integrable Couplings of the Negative-Order Korteweg-de Vries Equation
    Feng, Binlu
    Zhang, Yufeng
    ADVANCES IN MATHEMATICAL PHYSICS, 2015, 2015