Persistent global greening over the last four decades using novel long-term vegetation index data with enhanced temporal consistency

被引:0
|
作者
Jeong, Sungchan [1 ,2 ]
Ryu, Youngryel [1 ,2 ,3 ,6 ]
Gentine, Pierre [4 ,5 ]
Lian, Xu [4 ]
Fang, Jianing [4 ]
Li, Xing [6 ]
Dechant, Benjamin [7 ,8 ]
Kong, Juwon [6 ,9 ]
Choi, Wonseok [1 ,2 ]
Jiang, Chongya [10 ,11 ]
Keenan, Trevor F. [12 ,13 ]
Harrison, Sandy P. [14 ,16 ]
Prentice, Iain Colin [15 ,16 ]
机构
[1] Seoul Natl Univ, Interdisciplinary Program Landscape Architecture, Seoul, South Korea
[2] Seoul Natl Univ, Integrated Major Smart City Global Convergence, Seoul, South Korea
[3] Seoul Natl Univ, Dept Landscape Architecture & Rural Syst Engn, Seoul, South Korea
[4] Columbia Univ, Dept Earth & Environm Engn, New York, NY USA
[5] Columbia Univ, Ctr Learning Earth Artificial intelligence & Phys, New York, NY USA
[6] Seoul Natl Univ, Res Inst Agr & Life Sci, Seoul, South Korea
[7] German Ctr Integrat Biodivers Res iDiv, Leipzig, Germany
[8] Univ Leipzig, Leipzig, Germany
[9] Yale Univ, Yale Sch Environm, New Haven, CT 06511 USA
[10] Univ Illinois, Inst Sustainabil Energy & Environm, Agroecosyst Sustainabil Ctr, Urbana, IL USA
[11] Univ Illinois, Coll Agr Consumer & Environm Sci, Dept Nat Resources & Environm Sci, Urbana, IL USA
[12] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA USA
[13] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA USA
[14] Univ Reading, Geog & Environm Sci, Reading RG6 6AH, England
[15] Imperial Coll London, Georgina Mace Ctr Living Planet, Dept Life Sci, Silwood Pk Campus,Buckhurst Rd, Ascot SL5 7PY, England
[16] Tsinghua Univ, Minist Educ, Key Lab Earth Syst Modelling, Dept Earth Syst Sci, Beijing 100084, Peoples R China
基金
新加坡国家研究基金会;
关键词
AVHRR; MODIS; NDVI; NIRv; Greening trend; Orbital drift; LEAF-AREA INDEX; TIME-SERIES; SPOT-VEGETATION; DATA RECORD; CHANNELS; DATA SETS; AVHRR; NDVI; MODIS; REFLECTANCE;
D O I
10.1016/j.rse.2024.114282
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Advanced Very High-Resolution Radiometer (AVHRR) satellite observations have provided the longest global daily records from 1980s, but the remaining temporal inconsistency in vegetation index datasets has hindered reliable assessment of vegetation greenness trends. To tackle this, we generated novel global long-term Normalized Difference Vegetation Index (NDVI) and Near-Infrared Reflectance of vegetation (NIRv) datasets derived from AVHRR and Moderate Resolution Imaging Spectroradiometer (MODIS). We addressed residual temporal inconsistency through three-step post processing including cross-sensor calibration among AVHRR sensors, orbital drifting correction for AVHRR sensors, and machine learning-based harmonization between AVHRR and MODIS. After applying each processing step, we confirmed the enhanced temporal consistency in terms of detrended anomaly, trend and interannual variability of NDVI and NIRv at calibration sites. Our refined NDVI and NIRv datasets showed a persistent global greening trend over the last four decades (NDVI: 0.0008 yr(-1); NIRv: 0.0003 yr(-1)), contrasting with those without the three processing steps that showed rapid greening trends before 2000 (NDVI: 0.0017 yr(-1); NIRv: 0.0008 yr(-1)) and weakened greening trends after 2000 (NDVI: 0.0004 yr(-1); NIRv: 0.0001 yr(-1)). These findings highlight the importance of minimizing temporal inconsistency in long-term vegetation index datasets, which can support more reliable trend analysis in global vegetation response to climate changes.
引用
收藏
页数:21
相关论文
共 32 条
  • [2] Adjusting for long-term anomalous trends in NOAA's global vegetation index data sets
    Jiang, Le
    Tarpley, J. Dan
    Mitchell, Kenneth E.
    Zhou, Sisong
    Kogan, Felix N.
    Guo, Wei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (02): : 409 - 422
  • [3] Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data
    Zhang, Xiaoyang
    REMOTE SENSING OF ENVIRONMENT, 2015, 156 : 457 - 472
  • [4] Monitoring long-term vegetation dynamics over the Yangtze River Basin, China, using multi-temporal remote sensing data
    Fu, Jing
    Liu, Jianxiong
    Qin, Jianxin
    Yang, Liguo
    Zhang, Zhongbo
    Deng, Yunyuan
    Hu, Yong
    Su, Baoling
    ECOSPHERE, 2024, 15 (03):
  • [5] Investigating the long-term trends in aerosol optical depth and its association with meteorological parameters and enhanced vegetation index over Turkey
    Zeydan, Ozgur
    Tariq, Salman
    Qayyum, Fazzal
    Mehmood, Usman
    Ul-Haq, Zia
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (08) : 20337 - 20356
  • [6] Investigating the long-term trends in aerosol optical depth and its association with meteorological parameters and enhanced vegetation index over Turkey
    Özgür Zeydan
    Salman Tariq
    Fazzal Qayyum
    Usman Mehmood
    Zia Ul-Haq
    Environmental Science and Pollution Research, 2023, 30 : 20337 - 20356
  • [7] A long-term monthly assessment of land surface temperature and normalized difference vegetation index using Landsat data
    Guha, Subhanil
    URBE-REVISTA BRASILEIRA DE GESTAO URBANA, 2021, 13
  • [8] Identifying the shift in global wildfire weather conditions over the past four decades: an analysis based on change-points and long-term trends
    Shi, Ke
    Touge, Yoshiya
    GEOSCIENCE LETTERS, 2023, 10 (01)
  • [9] Identifying the shift in global wildfire weather conditions over the past four decades: an analysis based on change-points and long-term trends
    Ke Shi
    Yoshiya Touge
    Geoscience Letters, 10
  • [10] Spatio-temporal variation in terminal drought over western India using dryness index derived from long-term MODIS data
    Dhorde, A. G.
    Patel, N. R.
    ECOLOGICAL INFORMATICS, 2016, 32 : 28 - 38