Unsupervised fault detection approach based on depth auto-encoder for photovoltaic power generation system

被引:0
|
作者
Zhang, Jun [1 ]
Chen, Zongren [1 ]
Wu, Weimei [1 ]
Shao, Liuyang [2 ]
Deng, Kaihuan [2 ]
Gao, Shixiong [2 ]
机构
[1] Guangdong Polytechn Sci & Technol, Comp Engn Tech Coll, Artificial Intelligence Coll, Zhuhai 519090, Guangdong, Peoples R China
[2] North China Elect Power Univ, Sch Control & Comp Engn, Beijing, Peoples R China
关键词
Fault detection; deep learning; photovoltaic power generation system; deep auto-encoder; bidirectional long/short memory; TURBINE; DIAGNOSIS; NETWORKS;
D O I
10.3233/JCM-237070
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fault detection for photovoltaic power generation system is a challenging problem in condition monitoring and troubleshooting, which aims to maintain the safe operation of equipment and improve the benefit of photovoltaic industry. Aiming at the problems of frequent failures of photovoltaic power generation system, large amount of operating data and difficult to obtain fault samples, we propose an unsupervised fault detection approach for photovoltaic power generation system via bidirectional long/short memory deep auto-encoder which combines the auto-encoder in deep learning with the Bi-directional Long Short-Term Memory (BiLSTM). Specifically, We first take the statistical feature enhanced as the input of an auto-encoder based on BiLSTM. Then, we build a simulation model of Grid-connected PV system. Finally, we use the operation results under normal conditions to train the fault detection model to obtain the reconstruction error and determine the fault detection threshold, so as to judge the anomalies of the photovoltaic power generation system. We simulate the shadow occlusion fault and verify the effectiveness of the proposed method, and the fault detection accuracy of 0.95 is achieved. Compare with other models, the results show that it could set up better dependence on multi-dimensional data in time sequences, effectively testing solar panel failures and solving insufficient data labels problems.
引用
收藏
页码:849 / 861
页数:13
相关论文
共 50 条
  • [1] A Deep Auto-Encoder based Approach for Intrusion Detection System
    Farahnakian, Fahimeh
    Heikkonen, Jukka
    2018 20TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT), 2018, : 178 - 183
  • [2] AN AUTO-ENCODER BASED APPROACH TO UNSUPERVISED LEARNING OF SUBWORD UNITS
    Badino, Leonardo
    Canevari, Claudia
    Fadiga, Luciano
    Metta, Giorgio
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [3] A Novel Fault Detection Method Based on Adversarial Auto-Encoder
    Wang Jian
    Han Zhiyan
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 4166 - 4170
  • [4] Unsupervised Intrusion Detection Based on Asymmetric Auto-Encoder Feature Extraction
    Liu, Chunbo
    Wang, Liyin
    Zhang, Zhikai
    Xiang, Chunmiao
    Gu, Zhaojun
    Wang, Zhi
    Wang, Shuang
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (09) : 1161 - 1173
  • [5] Unsupervised Anomaly Detection for Electric Drives Based on Variational Auto-Encoder
    Shim, Jaehoon
    Lim, Gyu Cheol
    Ha, Jung-Ik
    2022 IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION, APEC, 2022, : 1703 - 1708
  • [6] Unsupervised Deep Spectrum Sensing: A Variational Auto-Encoder Based Approach
    Xie, Jiandong
    Fang, Jun
    Liu, Chang
    Yang, Linxiao
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (05) : 5307 - 5319
  • [7] A Lightweight Unsupervised Intrusion Detection Model Based on Variational Auto-Encoder
    Ren, Yi
    Feng, Kanghui
    Hu, Fei
    Chen, Liangyin
    Chen, Yanru
    SENSORS, 2023, 23 (20)
  • [8] Outlier Detection for Power Data Based on Contractive Auto-Encoder
    Lu, Yuan
    Leng, Xiaojie
    Xu, Kang
    Luan, Weiping
    Yang, Wei
    Li, Jing
    PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION SCIENCE AND SYSTEM, AISS 2019, 2019,
  • [9] Unsupervised Anomaly Detection Using Variational Auto-Encoder based Feature Extraction
    Yao, Rong
    Liu, Chongdang
    Zhang, Linxuan
    Peng, Peng
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,
  • [10] An Unsupervised Method for Rolling Bearing Fault Diagnosis based on Clustering and Stacked Auto-encoder
    Zhang, Jinghua
    Chen, Liang
    Li, Qi
    Zhuang, Yuxuan
    2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 1 - 5