A Closer Look at Classifier in Adversarial Domain Generalization

被引:4
|
作者
Wang, Ye [1 ]
Chen, Junyang [2 ]
Wang, Mengzhu [3 ]
Li, Hao [1 ]
Wang, Wei [4 ,6 ]
Su, Houcheng [5 ]
Lai, Zhihui [2 ]
Wang, Wei [4 ,6 ]
Chen, Zhenghan [7 ]
机构
[1] Natl Univ Def Technol, Changsha, Hunan, Peoples R China
[2] Shenzhen Univ, Shenzhen, Guangdong, Peoples R China
[3] Hefei Univ Technol, Hefei, Anhui, Peoples R China
[4] Sun Yat Sen Univ, Shenzhen Campus, Shenzhen, Guangdong, Peoples R China
[5] Univ Macau, Taipa, Macao, Peoples R China
[6] Shenzhen MSU BIT Univ, Shenzhen, Guangdong, Peoples R China
[7] Peking Univ, Beijing, Peoples R China
关键词
domain generalization; condition-invariant features; smoothing optima;
D O I
10.1145/3581783.3611743
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The task of domain generalization is to learn a classification model from multiple source domains and generalize it to unknown target domains. The key to domain generalization is learning discriminative domain-invariant features. Invariant representations are achieved using adversarial domain generalization as one of the primary techniques. For example, generative adversarial networks have been widely used, but suffer from the problem of low intra-class diversity, which can lead to poor generalization ability. To address this issue, we propose a new method called auxiliary classifier in adversarial domain generalization (CloCls). CloCls improve the diversity of the source domain by introducing auxiliary classifier. Combining typical task-related losses, e.g., cross-entropy loss for classification and adversarial loss for domain discrimination, our overall goal is to guarantee the learning of condition-invariant features for all source domains while increasing the diversity of source domains. Further, inspired by smoothing optima have improved generalization for supervised learning tasks like classification. We leverage that converging to a smooth minima with respect task loss stabilizes the adversarial training leading to better performance on unseen target domain which can effectively enhances the performance of domain adversarial methods. We have conducted extensive image classification experiments on benchmark datasets in domain generalization, and our model exhibits sufficient generalization ability and outperforms state-of-the-art DG methods.
引用
收藏
页码:280 / 289
页数:10
相关论文
共 50 条
  • [1] A Closer Look at Smoothness in Domain Adversarial Training
    Rangwani, Harsh
    Aithal, Sumukh K.
    Mishra, Mayank
    Jain, Arihant
    Babu, R. Venkatesh
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [2] Decomposed adversarial domain generalization
    Chen, Sentao
    KNOWLEDGE-BASED SYSTEMS, 2023, 263
  • [3] Localized Adversarial Domain Generalization
    Zhu, Wei
    Lu, Le
    Xiao, Jing
    Han, Mei
    Luo, Jiebo
    Harrison, Adam P.
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 7098 - 7108
  • [4] GENERALIZATION OF CONDITIONED MUSCLE TENSION - CLOSER LOOK
    GLAUS, KD
    KOTSES, H
    PSYCHOPHYSIOLOGY, 1979, 16 (06) : 513 - 519
  • [5] A Closer Look at the Adversarial Robustness of Deep Equilibrium Models
    Yang, Zonghan
    Pang, Tianyu
    Liu, Yang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [6] A closer look at the optimization landscapes of generative adversarial networks
    Berard, Hugo
    Gidel, Gauthier
    Almahairi, Amjad
    Vincent, Pascal
    Lacoste-Julien, Simon
    arXiv, 2019,
  • [7] Adversarial data splitting for domain generalization
    Gu, Xiang
    Sun, Jian
    Xu, Zongben
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (05)
  • [8] Domain Generalization with Adversarial Feature Learning
    Li, Haoliang
    Pan, Sinno Jialin
    Wang, Shiqi
    Kot, Alex C.
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5400 - 5409
  • [9] Adversarial data splitting for domain generalization
    Xiang Gu
    Jian Sun
    Zongben Xu
    Science China Information Sciences, 2024, 67
  • [10] Feature Stylization Adversarial Domain Generalization
    Hu, Zhengzhong
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,