l-adic digits and class number of imaginary quadratic fields

被引:0
|
作者
Pujahari, Sudhir [1 ]
Saikia, Neelam [2 ]
机构
[1] Natl Inst Sci Educ & Res Bhubaneswar, Sch Math Sci, PO Jatni, Bhubaneswar 752050, Odisha, India
[2] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Argul 752050, Odisha, India
关键词
Digits; class numbers; generalized Bernoulli numbers; Dirichlet L-functions; equidistributions;
D O I
10.1142/S0129167X24500411
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the work of [K. Girstmair, A "popular" class number formula, Amer. Math. Monthly 101(10) (1994) 997-1001; K. Girstmair, The digits of 1/p in connection with class number factors, Acta Arith. 67(4) (1994) 381-386] and [M. R. Murty and R. Thangadurai, The class number of Q(root - p) and digits of 1/p, Proc. Amer. Math. Soc. 139(4) (2010) 1277-1289], we study the average of the digits of the l-adic expansion of 1/n whenever n is a product of two distinct primes or a prime power. More explicitly, if l > 1 is an integer such that gcd(l, n) = 1, and suppose that 1/n = Sigma(8)(k=1) x(k)/l(k) is the l-adic expansion of 1/n, then we establish the average of the digits of the l-adic expansion of 1/n in terms of (l - 1)/2 and the "trace" of generalized Bernoulli numbers B-1,B-X, where.'s are odd Dirichlet characters modulo n. As a consequence of these results, we recover two well-known results of Gauss and Heilbronn (see Theorems 1.6 and 1.7).
引用
收藏
页数:16
相关论文
共 50 条