Equivariant vector bundles over the complex projective line

被引:0
|
作者
Biswas, Indranil [1 ]
Machu, Francois-Xavier [2 ]
机构
[1] Shiv Nadar Univ, Dept Math, NH91, Greater Noida 201314, Uttar Pradesh, India
[2] ESIEA, 74 Bis Ave Maurice Thorez, F-94200 Ivry, France
关键词
Equivariant bundle; Harder-Narasimhan filtration; Projective line; automorphism;
D O I
10.1007/s40574-024-00417-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite abelian group acting faithfully on CP1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb C}{\mathbb P}<^>1$$\end{document} via holomorphic automorphisms. In [2] the G-equivariant algebraic vector bundles on G-invariant affine open subsets of CP1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb C}{\mathbb P}<^>1$$\end{document} were classified. We classify the G-equivariant algebraic vector bundles on CP1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb C}{\mathbb P}<^>1$$\end{document}.
引用
收藏
页数:9
相关论文
共 50 条