Spatial Estimation of Soil Organic Carbon Content Utilizing PlanetScope, Sentinel-2, and Sentinel-1 Data

被引:4
|
作者
Wang, Ziyu [1 ]
Wu, Wei [2 ]
Liu, Hongbin [1 ]
机构
[1] Southwest Univ, Coll Resources & Environm, Chongqing 400716, Peoples R China
[2] Southwest Univ, Coll Comp & Informat Sci, Chongqing 400716, Peoples R China
关键词
multi-spectral imaging; synthetic aperture radar data; machine learning; soil property prediction; land use; VEGETATION INDEX; LAND-USE; LOESS PLATEAU; IMAGERY; REFLECTANCE; VARIABILITY; CROPLANDS; MOISTURE; MATTER; AVHRR;
D O I
10.3390/rs16173268
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The accurate prediction of soil organic carbon (SOC) is important for agriculture and land management. Methods using remote sensing data are helpful for estimating SOC in bare soils. To overcome the challenge of predicting SOC under vegetation cover, this study extracted spectral, radar, and topographic variables from multi-temporal optical satellite images (high-resolution PlanetScope and medium-resolution Sentinel-2), synthetic aperture radar satellite images (Sentinel-1), and digital elevation model, respectively, to estimate SOC content in arable soils in the Wuling Mountain region of Southwest China. These variables were modeled at four different spatial resolutions (3 m, 20 m, 30 m, and 80 m) using the eXtreme Gradient Boosting algorithm. The results showed that modeling resolution, the combination of multi-source remote sensing data, and temporal phases all influenced SOC prediction performance. The models generally yielded better results at a medium (20 m) modeling resolution than at fine (3 m) and coarse (80 m) resolutions. The combination of PlanetScope, Sentinel-2, and topography factors gave satisfactory predictions for dry land (R2 = 0.673, MAE = 0.107%, RMSE = 0.135%). The addition of Sentinel-1 indicators gave the best predictions for paddy field (R2 = 0.699, MAE = 0.114%, RMSE = 0.148%). The values of R2 of the optimal models for paddy field and dry land improved by 36.0% and 33.4%, respectively, compared to that for the entire study area. The optical images in winter played a dominant role in the prediction of SOC for both paddy field and dry land. This study offers valuable insights into effectively modeling soil properties under vegetation cover at various scales using multi-source and multi-temporal remote sensing data.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] ESTIMATION OF SOIL MOISTURE USING SENTINEL-1 AND SENTINEL-2 IMAGES
    Sarteshnizi, R. Esmaeili
    Vayghan, S. Sahebi
    Jazirian, I.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 137 - 142
  • [2] SENTINEL-1 & SENTINEL-2 DATA FOR SOIL TILLAGE CHANGE DETECTION
    Satalino, G.
    Mattia, F.
    Balenzano, A.
    Lovergine, F. P.
    Rinaldi, M.
    De Santis, A. P.
    Ruggieri, S.
    Nafria Garcia, D. A.
    Paredes Gomez, V.
    Ceschia, E.
    Planells, M.
    Le Toan, T.
    Ruiz, A.
    Moreno, J. F.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6627 - 6630
  • [3] Soil Texture Estimation Using Radar and Optical Data from Sentinel-1 and Sentinel-2
    Bousbih, Safa
    Zribi, Mehrez
    Pelletier, Charlotte
    Gorrab, Azza
    Lili-Chabaane, Zohra
    Baghdadi, Nicolas
    Ben Aissa, Nadhira
    Mougenot, Bernard
    REMOTE SENSING, 2019, 11 (13)
  • [4] Hybrid Methodology Using Sentinel-1/Sentinel-2 for Soil Moisture Estimation
    Nativel, Simon
    Ayari, Emna
    Rodriguez-Fernandez, Nemesio
    Baghdadi, Nicolas
    Madelon, Remi
    Albergel, Clement
    Zribi, Mehrez
    REMOTE SENSING, 2022, 14 (10)
  • [5] Spatial Inversion of Soil Organic Carbon Content Based on Hyperspectral Data and Sentinel-2 Images
    Huang, Xiaoyu
    Wang, Xuemei
    Guo, Yanping
    An, Baisong
    LAND DEGRADATION & DEVELOPMENT, 2025,
  • [6] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Mohammad Qasim
    Elmar Csaplovics
    Environmental Monitoring and Assessment, 2024, 196
  • [7] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Qasim, Mohammad
    Csaplovics, Elmar
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (03)
  • [8] FOREST ABOVEGROUND BIOMASS ESTIMATION USING A COMBINATION OF SENTINEL-1 AND SENTINEL-2 DATA
    Hoscilo, Agata
    Lewandowska, Aneta
    Ziolkowski, Dariusz
    Sterenczak, Krzysztof
    Lisanczuk, Marek
    Schmullius, Christiane
    Pathe, Carsten
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9026 - 9029
  • [9] Sentinel-2 and Sentinel-1 Bare Soil Temporal Mosaics of 6-Year Periods for Soil Organic Carbon Content Mapping in Central France
    Urbina-Salazar, Diego
    Vaudour, Emmanuelle
    Richer-de-Forges, Anne C.
    Chen, Songchao
    Martelet, Guillaume
    Baghdadi, Nicolas
    Arrouays, Dominique
    REMOTE SENSING, 2023, 15 (09)
  • [10] SENTINEL-1 & SENTINEL-2 FOR SOIL MOISTURE RETRIEVAL AT FIELD SCALE
    Mattia, F.
    Balenzano, A.
    Satalino, G.
    Lovergine, F.
    Peng, J.
    Wegmuller, U.
    Cartus, O.
    Davidson, M. W. J.
    Kim, S.
    Johnson, J.
    Walker, J.
    Wu, X.
    Pauwels, V. R. N.
    McNairn, H.
    Caldwell, T.
    Cosh, M.
    Jackson, T.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6143 - 6146