Synthesis of Fe-Modified g-C3N4 Nanorod Bunches for the Efficient Photocatalytic Degradation of Oxytetracycline

被引:0
|
作者
Zhao, Dongmei [1 ]
Wang, Xinyao [1 ]
Wang, Libin [2 ]
Wang, Jingzhen [2 ]
Wang, Xu [2 ]
Cheng, Weipeng [2 ]
机构
[1] Heilongjiang East Univ, Dept Food, Harbin 150066, Peoples R China
[2] Heilongjiang Univ, Sch Chem Engn & Mat, Harbin 150080, Peoples R China
关键词
g-C3N4; Fe; chemical vapor co-deposition; photocatalytic degradation; oxytetracycline; COMPOSITES;
D O I
10.3390/ma17112488
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Antibiotic residues have been found to have potentially harmful effects on ecological and human health. Carbon nitride-based photocatalysts have widely focused on antibiotic photocatalytic degradation. Herein, we prepared Fe-modified g-C3N4 nanorod bunches (FCNBs) using chemical vapor co-deposition. Specifically, through the process of calcination, a blend of urea and chlorophyllin sodium iron salt underwent an intriguing transformation, resulting in the integration of Fe into the framework of the g-C3N4 nanorod cluster. The resulting photocatalyst exhibited remarkable stability and superior dispersibility. The prepared FCNBs had a unique structure, which was beneficial for increasing light absorption. Furthermore, the Fe species formed a chemical coordination with the g-C3N4 matrix, thereby altering the electronic structure of the matrix. This modification facilitated charge transfer, prolonged the carrier lifetime, and enhanced light absorption, all of which significantly increased the photocatalytic activity. The oxytetracycline degradation efficiency of FCNBs was 82.5%, and they demonstrated outstanding stability in cycle trials. This work introduces a promising photocatalyst for the degradation of antibiotics.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Synthesis of Fe2O3/g-C3N4 composite with efficient photocatalytic degradation for methyl orange
    Wei, Liang
    Zhang, Xianqian
    Wang, Jie
    Yang, Jing
    Yang, Xiande
    INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 159
  • [2] Synthesis of highly porous g-C3N4 nanotubes for efficient photocatalytic degradation of sulfamethoxazole
    Zhang, Huayu
    Li, Wenchao
    Yan, Yating
    Wang, Wei
    Ren, Yueping
    Li, Xiufen
    MATERIALS TODAY COMMUNICATIONS, 2021, 27
  • [3] Synthesis of Carbon Nanotubes Modified g-C3N4 Photocatalysts for Enhanced Photocatalytic Degradation Activity
    Wang Peng
    Li Zhao
    Zhou Ying-Mei
    Xu Yan
    Zhu Jie
    Wang Shi-Fan
    Cai Ke-Ying
    Li Jing
    Du Xi-Hua
    Yang Peng-Ju
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2019, 35 (02) : 217 - 224
  • [4] Solvothermal synthesis of g-C3N4 nanosheets modified carbon quantum dots for enhanced photocatalytic degradation
    Wang, Linxia
    Lu, Yining
    Xu, Jingjing
    Tao, Feifei
    Liang, Pengfei
    SOLID STATE SCIENCES, 2023, 143
  • [5] Molecular engineering of donor-acceptor structured g-C3N4 for superior photocatalytic oxytetracycline degradation
    Zhang, Chen
    Ouyang, Zenglin
    Yang, Yang
    Long, Xia
    Qin, Lei
    Wang, Wenjun
    Zhou, Yin
    Qin, Deyu
    Qin, Fanzhi
    Lai, Cui
    CHEMICAL ENGINEERING JOURNAL, 2022, 448
  • [6] Superior Adsorption and Photocatalytic Degradation Capability of Mesoporous LaFeO3/g-C3N4 for Removal of Oxytetracycline
    Xu, Ke
    Yang, Xiaosheng
    Ruan, Luda
    Qi, Shaolv
    Liu, Jianling
    Liu, Kaiyuan
    Pan, Shaoliang
    Feng, Guangwei
    Dai, Zeqin
    Yang, Xianjiong
    Li, Rong
    Feng, Jian
    CATALYSTS, 2020, 10 (03)
  • [7] Hydrazine modified g-C3N4 with enhanced photocatalytic activity for degradation of indigo carmine
    Valencia, G. Karen
    Hernandez-Gordillo, Agileo
    Mendez-Galvan, Melissa
    Morett, Diego
    Rodil, Sandra E.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2022, 150
  • [8] Synthesis of Carbon Ball Modified g-C3N4 for Improved Photocatalytic Activity
    Liu Chong
    Liu Lilai
    Nie Jiahui
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2018, 39 (07): : 1511 - 1517
  • [9] Efficient removal of oxytetracycline antibiotic from aqueous media using UV/g-C3N4/Fe3O4 photocatalytic process
    Mahmoudi, Kourosh
    Farzadkia, Mahdi
    Kalantary, Roshanak Rezaei
    Sobhi, Hamid Reza
    Yeganeh, Mojtaba
    Esrafili, Ali
    HELIYON, 2024, 10 (09)
  • [10] Fabrication of g-C3N4/N,Fe co-doped CQDs composites: in situ decoration of g-C3N4 with N-CQDs and Fe and efficient visible-light photocatalytic degradation of tetracycline
    Mou, Zhigang
    Chen, Ting
    Tao, Yang
    Gao, Yang
    Sun, Jianhua
    Lei, Weining
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (44)