Tumor evolution metrics predict recurrence beyond 10 years in locally advanced prostate cancer

被引:1
|
作者
Fernandez-Mateos, Javier [1 ]
Cresswell, George D. [1 ,2 ]
Trahearn, Nicholas [1 ]
Webb, Katharine [1 ,3 ]
Sakr, Chirine [1 ]
Lampis, Andrea [1 ]
Stuttle, Christine [3 ,4 ]
Corbishley, Catherine M. [5 ,6 ]
Stavrinides, Vasilis [7 ]
Zapata, Luis [1 ]
Spiteri, Inmaculada [1 ]
Heide, Timon [1 ]
Gallagher, Lewis [9 ,10 ]
James, Chela [1 ,8 ]
Ramazzotti, Daniele [11 ]
Gao, Annie [12 ,13 ]
Kote-Jarai, Zsofia [4 ]
Acar, Ahmet [1 ,14 ]
Truelove, Lesley [12 ,13 ]
Proszek, Paula [9 ,10 ]
Murray, Julia [5 ]
Reid, Alison [3 ]
Wilkins, Anna [3 ,5 ]
Hubank, Michael [9 ,10 ]
Eeles, Ros [3 ,4 ]
Dearnaley, David [5 ,15 ]
Sottoriva, Andrea [1 ,8 ]
机构
[1] Inst Canc Res, Ctr Evolut & Canc, Evolutionary Genom & Modelling Lab, London, England
[2] St Anna Childrens Canc Res Inst, Vienna, Austria
[3] Royal Marsden NHS Fdn Trust, London, England
[4] Inst Canc Res, Oncogenet Team, London, England
[5] Inst Canc Res, Div Radiotherapy & Imaging, London, England
[6] St Georges Healthcare NHS Trust, London, England
[7] UCL, Div Surg & Intervent Sci, London, England
[8] Human Technopole, Computat Biol Res Ctr, Milan, Italy
[9] Inst Canc Res, Mol Pathol Sect, London, England
[10] Royal Marsden NHS Fdn, Clin Genom, London, England
[11] Univ Milano Bicocca, Milan, Italy
[12] Inst Canc Res, Bob Champ Canc Unit, London, England
[13] Royal Marsden NHS Fdn Trust, London, England
[14] Middle East Tech Univ, Dept Biol Sci, Ankara, Turkiye
[15] Royal Marsden NHS Fdn Trust, Acad Urol Unit, London, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
ISUP CONSENSUS CONFERENCE; COPY NUMBER ANALYSIS; INTERNATIONAL-SOCIETY; HETEROGENEITY; PATTERNS; CLASSIFICATION; SURVIVAL; PART;
D O I
10.1038/s43018-024-00787-0
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Cancer evolution lays the groundwork for predictive oncology. Testing evolutionary metrics requires quantitative measurements in controlled clinical trials. We mapped genomic intratumor heterogeneity in locally advanced prostate cancer using 642 samples from 114 individuals enrolled in clinical trials with a 12-year median follow-up. We concomitantly assessed morphological heterogeneity using deep learning in 1,923 histological sections from 250 individuals. Genetic and morphological (Gleason) diversity were independent predictors of recurrence (hazard ratio (HR) = 3.12 and 95% confidence interval (95% CI) = 1.34-7.3; HR = 2.24 and 95% CI = 1.28-3.92). Combined, they identified a group with half the median time to recurrence. Spatial segregation of clones was also an independent marker of recurrence (HR = 2.3 and 95% CI = 1.11-4.8). We identified copy number changes associated with Gleason grade and found that chromosome 6p loss correlated with reduced immune infiltration. Matched profiling of relapse, decades after diagnosis, confirmed that genomic instability is a driving force in prostate cancer progression. This study shows that combining genomics with artificial intelligence-aided histopathology leads to the identification of clinical biomarkers of evolution. Sottoriva and colleagues combine next-generation sequencing and AI-aided histopathology to assess tumor evolvability in patient samples with long-term follow-up and find that it can be a strong predictor of recurrence in high-risk prostate cancer.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Does Tumor Reduction During Radiation Therapy Predict for Local Recurrence in Locally Advanced Lung Cancer?
    Tennyson, N. B.
    Hugo, G. D.
    Sima, A.
    Sleeman, W.
    Rosu, M.
    Catron, T. D.
    Jan, N.
    Weiss, E.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2015, 93 (03): : E433 - E434
  • [2] EMT Markers in Locally-Advanced Prostate Cancer: Predicting Recurrence?
    Cheaito, Katia A.
    Bahmad, Hisham F.
    Hadadeh, Ola
    Saleh, Eman
    Dagher, Christelle
    Hammoud, Miza Salim
    Shahait, Mohammad
    Abou Mrad, Zaki
    Nassif, Samer
    Tawil, Ayman
    Bulbul, Muhammad
    Khauli, Raja
    Wazzan, Wassim
    Nasr, Rami
    Shamseddine, Ali
    Temraz, Sally
    El-Sabban, Marwan E.
    El-Hajj, Albert
    Mukherji, Deborah
    Abou-Kheir, Wassim
    [J]. FRONTIERS IN ONCOLOGY, 2019, 9
  • [3] Integrating Tumor and Nodal Radiomics to Predict the Response to Neoadjuvant Chemotherapy and Recurrence Risk for Locally Advanced Gastric Cancer
    Han, Shimei
    Han, Xiaomeng
    Song, Yaolin
    Liu, Ruiqing
    Wang, Hexiang
    Zhang, Zaixian
    Yu, Bohua
    Li, Zhiming
    Liu, Shunli
    [J]. CURRENT MEDICAL IMAGING, 2024,
  • [4] Utility of MRI-based radiomic metrics and circulating tumor DNA to predict outcomes in locally advanced rectal cancer
    Marisi, G.
    Molinari, C.
    Feliciani, G.
    Prochowski, A. I.
    Laliotis, G.
    Rapposelli, I. G.
    Petracci, E.
    Sharma, S.
    Dutta, P.
    Malhotra, M.
    Liu, M. C.
    Ulivi, P.
    Frassineti, G. L.
    Murator, M.
    Romeo, A.
    Jurdi, A.
    Martinelli, G.
    Passardi, A.
    [J]. ANNALS OF ONCOLOGY, 2024, 35 : S115 - S115
  • [5] Locally advanced prostate cancer
    Klein E.A.
    Kupelian P.A.
    Dreicer R.
    Peereboom D.
    Zippe C.
    [J]. Current Treatment Options in Oncology, 2001, 2 (5) : 403 - 411
  • [6] Functional Imaging to Predict Tumor Response in Locally Advanced Cervical Cancer
    Tara D. Barwick
    Alexandra Taylor
    Andrea Rockall
    [J]. Current Oncology Reports, 2013, 15 : 549 - 558
  • [7] Functional Imaging to Predict Tumor Response in Locally Advanced Cervical Cancer
    Barwick, Tara D.
    Taylor, Alexandra
    Rockall, Andrea
    [J]. CURRENT ONCOLOGY REPORTS, 2013, 15 (06) : 549 - 558
  • [8] Proton-photon or photon therapy of locally advanced prostate cancer: 10 years results and dynamics of toxicities
    Khmelevsky, E.
    Kancheli, I.
    Khoroshkov, V.
    Kaprin, A.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2014, 111 : S84 - S85
  • [9] PET/CT parameters to predict survival and recurrence in patients with locally advanced anal cancer
    PERAZZ, M., I
    Castelli, J.
    De Crevoisier, R.
    Lievre, A.
    Palard-Novello, X.
    Devillers, A.
    Guimas, V.
    Le Scodan, R.
    Gnep, K.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S1121 - S1122
  • [10] Locally advanced prostate cancer and local recurrence. Limitations of operations and radiation therapy
    Pfister, D.
    Ganswindt, U.
    Heidenreich, A.
    [J]. ONKOLOGE, 2013, 19 (09): : 728 - +