Techniques, mechanisms, and application of 3D-printed biodegradable metals for bone regeneration

被引:0
|
作者
Wang, Lingxiao [1 ,2 ]
Liu, Yang [1 ]
Fan, Zhipeng [1 ,3 ,4 ]
机构
[1] Capital Med Univ, Beijing Stomatol Hosp, Sch Stomatol, Lab Mol Signaling & Stem Cells Therapy,Beijing Key, Beijing, Peoples R China
[2] Capital Med Univ, Beijing Stomatol Hosp, Dept Dent Implant Ctr, Sch Stomatol, Beijing, Peoples R China
[3] Capital Med Univ, Beijing Lab Oral Hlth, Beijing, Peoples R China
[4] Chinese Acad Med Sci, Res Unit Tooth Dev & Regenerat, Beijing, Peoples R China
关键词
Three-dimensional printing; Biodegradable metals; Bone regeneration; Bone tissue engineering; FE-BASED ALLOYS; ZN-BASED ALLOYS; IN-VITRO; MAGNESIUM ALLOYS; STAINLESS-STEEL; CORROSION BEHAVIOR; ANTIBACTERIAL PROPERTIES; SURFACE MODIFICATION; MG ALLOYS; VIVO;
D O I
10.36922/ijb.2460
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Repairing severe bone defects and restoring complete bone tissue morphology are major challenges in clinical practice. Biodegradable metals (BMs) are bioactive materials with active degradation properties. The gradual improvement of threedimensional (3D) printing technology holds tremendous potential for development and has spurred on the growing utilization of 3D-printed BM materials in the clinical applications of bone regeneration. In this paper, we review the application of three BM (magnesium, iron, and zinc) materials for use in 3D-printed bone regeneration; define the principle of 3D-printed bone regeneration, including the method and selection of materials; and summarize the characteristics and uses of various printing technologies and the properties, advantages, and disadvantages of BMs. Compared to traditional nondegradable implants, 3D-printed degradable metal implants have the advantages of not leaving residue, avoiding stress shielding, promoting osteogenesis and vascularization, and exhibiting antimicrobial ability. In addition, we summarize the clinical applications of 3D-printed BMs. 3D-printed BMs can be used not only for fracture fixation and bone defect repair but also for osteoporotic fracture repair, cartilage repair, maxillofacial surgery, and other processes. In this article, we discuss the advantages and limitations of the current 3D printing degradable metallic materials and describe future development prospects.
引用
收藏
页码:38 / 60
页数:23
相关论文
共 50 条
  • [1] 3D-printed vascularized biofunctional scaffold for bone regeneration
    Cao, Bojun
    Lin, Jieming
    Tan, Jia
    Li, Jiaxin
    Ran, Zhaoyang
    Deng, Liang
    Hao, Yongqiang
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (03) : 185 - 199
  • [2] Comparison of Autografts and Biodegradable 3D-Printed Composite Scaffolds with Osteoconductive Properties for Tissue Regeneration in Bone Tuberculosis
    Vinogradova, Tatiana I.
    Serdobintsev, Mikhail S.
    Korzhikova-Vlakh, Evgenia G.
    Korzhikov-Vlakh, Viktor A.
    Kaftyrev, Alexander S.
    Blum, Natalya M.
    Semenova, Natalya Yu.
    Esmedlyaeva, Dilyara S.
    Dyakova, Marina E.
    Nashchekina, Yulia A.
    Dogonadze, Marine Z.
    Zabolotnykh, Natalia V.
    Yablonsky, Petr K.
    BIOMEDICINES, 2023, 11 (08)
  • [3] Towards resorbable 3D-printed scaffolds for craniofacial bone regeneration
    Karanth, Divakar
    Song, Kaidong
    Macey, L. Martin
    Meyer, Delaney R.
    Dolce, Calogero
    Huang, Yong
    Holliday, L. Shannon
    ORTHODONTICS & CRANIOFACIAL RESEARCH, 2023, 26 : 188 - 195
  • [4] Electrospun/3D-printed PCL bioactive scaffold for bone regeneration
    Rosales-Ibanez, Raul
    Viera-Ruiz, Alejandro Emmanuel
    Cauich-Rodriguez, Juan Valerio
    Carrillo-Escalante, Hugo Joel
    Gonzalez-Gonzalez, Arely
    Rodriguez-Martinez, Jesus Jiovanni
    Hernandez-Sanchez, Fernando
    POLYMER BULLETIN, 2023, 80 (03) : 2533 - 2552
  • [5] Electrospun/3D-printed PCL bioactive scaffold for bone regeneration
    Raúl Rosales-Ibáñez
    Alejandro Emmanuel Viera-Ruiz
    Juan Valerio Cauich-Rodríguez
    Hugo Joel Carrillo-Escalante
    Arely González-González
    Jesús Jiovanni Rodríguez-Martínez
    Fernando Hernández-Sánchez
    Polymer Bulletin, 2023, 80 : 2533 - 2552
  • [6] Final conference of the project "Biodegradable 3D-printed structures for bone augmentation"
    Ivankovic, H.
    KEMIJA U INDUSTRIJI-JOURNAL OF CHEMISTS AND CHEMICAL ENGINEERS, 2024, 73 (01): : 80 - 81
  • [7] Development of 3D-Printed, Biodegradable, Conductive PGSA Composites for Nerve Tissue Regeneration
    Huang, Wei-Jia
    Wang, Jane
    MACROMOLECULAR BIOSCIENCE, 2023, 23 (03)
  • [8] Characterization of 3D printed biodegradable piezoelectric scaffolds for bone regeneration
    Karanth, Divakar
    Puleo, David
    Dawson, Dolph
    Holliday, L. S.
    Sharab, Lina
    CLINICAL AND EXPERIMENTAL DENTAL RESEARCH, 2023, 9 (02): : 398 - 408
  • [9] 3D-Printed Piezoelectric Scaffolds with Shape Memory Polymer for Bone Regeneration
    Li, Guanlin
    Li, Zehao
    Min, Yajun
    Chen, Shilu
    Han, Ruijia
    Zhao, Zheng
    SMALL, 2023, 19 (40)
  • [10] 3D-printed hydroxyapatite microspheres reinforced PLGA scaffolds for bone regeneration
    Wei, Jiawei
    Yan, Yan
    Gao, Jing
    Li, Yubao
    Wang, Ruili
    Wang, Jiexin
    Zou, Qin
    Zuo, Yi
    Zhu, Meifang
    Li, Jidong
    BIOMATERIALS ADVANCES, 2022, 133