On the mechanical, thermoelectric, and excitonic properties of Tetragraphene monolayer

被引:0
|
作者
Tromer, Raphael M. [1 ]
Ribeiro, L. A. [2 ,3 ]
Galvao, Douglas S. [4 ,5 ]
Dias, Alexandre C. [6 ,7 ]
Moujaes, Elie A. [8 ]
机构
[1] Univ Estadual Campinas, Dept Appl Phys, BR-13083970 Campinas, SP, Brazil
[2] Univ Brasilia, Inst Phys, BR-70919970 Brasilia, DF, Brazil
[3] Univ Brasilia, Inst Phys, Computat Mat Lab, LCCMat, BR-70910900 Brasilia, Brazil
[4] Univ Estadual Campinas, BR-13083970 Campinas, SP, Brazil
[5] Ctr Computat Engn & Sci, BR-13083970 Campinas, SP, Brazil
[6] Univ Brasilia, Inst Phys, BR-70910900 Brasilia, DF, Brazil
[7] Int Ctr Phys, BR-70919970 Brasilia, DF, Brazil
[8] Fed Univ Rondonia, Phys Dept, BR-76801974 Porto Velho, Brazil
来源
基金
巴西圣保罗研究基金会;
关键词
Density functional theory; Tetragraphene; Excitons; Elastic constants; Thermoelectricity; ELECTRONIC-PROPERTIES; THERMAL-CONDUCTIVITY; CARBON; 1ST-PRINCIPLES; TETRAHEXCARBON; GRAPHENE;
D O I
10.1016/j.mtcomm.2024.109310
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two-dimensional carbon allotropes have attracted much attention due to their extraordinary optoelectronic and mechanical properties, which can be exploited for energy conversion and storage applications. In this work, we use density functional theory simulations and semi-empirical methods to investigate the mechanical, thermoelectric, and excitonic properties of Tetrahexcarbon (also known as Tetragraphene). This quasi-2D carbon allotrope exhibits a combination of squared and hexagonal rings in a buckled shape. Our findings reveal that tetragraphene is a semiconductor material with a direct electronic bandgap of 2.66 eV. Despite the direct nature of the electronic band structure, this material has an indirect exciton ground state of 2.30 eV, which results in an exciton binding energy of 0.36 eV. At ambient temperature, we obtain that the lattice thermal conductivity (kappa(L)) for tetragraphene is approximately 118 W/mK. Young's modulus and the shear modulus of tetragraphene are almost isotropic, with maximum values of 286.0 N/m and 133.7 N/m, respectively, while exhibiting a very low anisotropic Poisson ratio value of 0.09.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Mechanical, optical and thermoelectric properties of Janus BiTeCl monolayer
    Chauhan, Poonam
    Singh, Jaspreet
    Kumar, Ashok
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2022, 167
  • [2] Mechanical, Optical and Thermoelectric Properties of Janus BiTeCl Monolayer
    Chauhan, Poonam
    Singh, Jaspreet
    Kumar, Ashok
    [J]. arXiv, 2023,
  • [3] Monolayer Optoelectronics and Their Excitonic Properties
    Lien, Der-Hsien
    [J]. 2021 INTERNATIONAL SYMPOSIUM ON VLSI TECHNOLOGY, SYSTEMS AND APPLICATIONS (VLSI-TSA), 2021,
  • [4] Thermoelectric Properties of a Monolayer Bismuth
    Cheng, Long
    Liu, Huijun
    Tan, Xiaojian
    Zhang, Jie
    Wei, Jie
    Lv, Hongyan
    Shi, Jing
    Tang, Xinfeng
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (02): : 904 - 910
  • [5] Mechanical properties of tetragraphene single-layer: A molecular dynamics study
    Brandao, Wjefferson H. S.
    Aguiar, Acrisio L.
    Fonseca, Alexandre F.
    Galvao, D. S.
    De Sousa, J. M.
    [J]. MECHANICS OF MATERIALS, 2023, 176
  • [6] Electronic properties of tetragraphene nanoribbons
    de Vasconcelos, Fabricio Morais
    Souza Filho, Antonio Gomes
    Meunier, Vincent
    Girao, Eduardo Costa
    [J]. PHYSICAL REVIEW MATERIALS, 2019, 3 (06)
  • [7] Quasiparticle and excitonic properties of monolayer SrTiO3
    Varrassi, Lorenzo
    Liu, Peitao
    Franchini, Cesare
    [J]. PHYSICAL REVIEW MATERIALS, 2024, 8 (02)
  • [8] Thermoelectric properties of monolayer GeAsSe and SnSbTe
    Huang, H.H.
    Fan, Xiaofeng
    Singh, David J.
    Zheng, W.T.
    [J]. Journal of Materials Chemistry C, 2020, 8 (28): : 9763 - 9774
  • [9] Thermoelectric properties of monolayer GeAsSe and SnSbTe
    Huang, H. H.
    Fan, Xiaofeng
    Singh, David J.
    Zheng, W. T.
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (28) : 9763 - 9774
  • [10] Monolayer excitonic laser
    Yu Ye
    Zi Jing Wong
    Xiufang Lu
    Xingjie Ni
    Hanyu Zhu
    Xianhui Chen
    Yuan Wang
    Xiang Zhang
    [J]. Nature Photonics, 2015, 9 : 733 - 737