IGG: Improved Graph Generation for Domain Adaptive Object Detection

被引:2
|
作者
Li, Pengteng [1 ,3 ]
He, Ying [1 ,3 ]
Yu, F. Richard [1 ,3 ]
Song, Pinhao [2 ]
Yin, Dongfu [3 ]
Zhou, Guang [4 ]
机构
[1] Shenzhen Univ, Shenzhen Key Lab Digital & Intelligent Technol &, Shenzhen, Peoples R China
[2] Katholieke Univ Leuven, Robot Res Grp, Leuven, Belgium
[3] Guangdong Lab Artificial Intelligence & Digital E, Shenzhen, Peoples R China
[4] Deeproute Inc, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
domain adaptive; object detection; prototypes; class conditional distribution;
D O I
10.1145/3581783.3613116
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain Adaptive Object Detection (DAOD) transfers an object detector from a labeled source domain to a novel unlabeled target domain. Recent works bridge the domain gap by aligning cross-domain pixel-pairs in the non-euclidean graphical space and minimizing the domain discrepancy for adapting semantic distribution. Though great successes, these methods model graphs roughly with coarse semantic sampling due to ignoring the non-informative noises and failing to concentrate on precise semantics alignment. Besides, the coarse graph generation inevitably contains abnormal nodes. These challenges result in biased domain adaptation. Therefore, we propose an Improved Graph Generation (IGG) framework which conducts high-quality graph generation for DAOD. Specifically, we design an Intensive Node Refinement (INR) module that reconstructs the noisy sampled nodes with a memory bank, and contrastively regularizes the noisy features. For better semantics alignment, we decouple the domain-specific style and category-invariant content encoded in graph covariance and selectively eliminate only the domain-specific style. Then, a Precision Graph Optimization (PGO) adaptor is proposed which utilizes the variational inference to down-weight abnormal nodes. Comprehensive experiments on three adaptation benchmarks demonstrate that IGG achieves state-of-the-art results in unsupervised domain adaptation.
引用
收藏
页码:1314 / 1324
页数:11
相关论文
共 50 条
  • [1] SIGMA plus plus : Improved Semantic-Complete Graph Matching for Domain Adaptive Object Detection
    Li, Wuyang
    Liu, Xinyu
    Yuan, Yixuan
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (07) : 9022 - 9040
  • [2] Domain Adaptive Object Detection
    Mirrashed, Fatemeh
    Morariu, Vlad I.
    Siddiquie, Behjat
    Feris, Rogerio S.
    Davis, Larry S.
    [J]. 2013 IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION (WACV), 2013, : 323 - 330
  • [3] CIGAR: Cross-Modality Graph Reasoning for Domain Adaptive Object Detection
    Liu, Yabo
    Wang, Jinghua
    Huang, Chao
    Wang, Yaowei
    Xu, Yong
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 23776 - 23786
  • [4] SIGMA: Semantic-complete Graph Matching for Domain Adaptive Object Detection
    Li, Wuyang
    Liu, Xinyu
    Yuan, Yixuan
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5281 - 5290
  • [5] Dual Bipartite Graph Learning: A General Approach for Domain Adaptive Object Detection
    Chen, Chaoqi
    Li, Jiongcheng
    Zheng, Zebiao
    Huang, Yue
    Ding, Xinghao
    Yu, Yizhou
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 2683 - 2692
  • [6] Domain Contrast for Domain Adaptive Object Detection
    Liu, Feng
    Zhang, Xiaosong
    Wan, Fang
    Ji, Xiangyang
    Ye, Qixiang
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8227 - 8237
  • [7] Instance Relation Graph Guided Source-Free Domain Adaptive Object Detection
    Vibashan, V. S.
    Oza, Poojan
    Patel, Vishal M.
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 3520 - 3530
  • [8] Adaptive graph reasoning network for object detection
    Zhong, Xinfang
    Kuang, Wenlan
    Li, Zhixin
    [J]. IMAGE AND VISION COMPUTING, 2024, 151
  • [9] SAMPLING FOR UNSUPERVISED DOMAIN ADAPTIVE OBJECT DETECTION
    Mirrashed, Fatemeh
    Morariu, Vlad I.
    Davis, Larry S.
    [J]. 2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3288 - 3292
  • [10] Deep Domain Adaptive Object Detection: a Survey
    Li, Wanyi
    Li, Fuyu
    Luo, Yongkang
    Wang, Peng
    Sun, Jia
    [J]. 2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1808 - 1813