A Rationally Designed Synthetic Antiviral Peptide Binder Targeting the Receptor-Binding Domain of SARS-CoV-2

被引:1
|
作者
Behera, Lalita Mohan [1 ]
Gupta, Pulkit Kr. [1 ]
Ghosh, Manaswini [1 ]
Shadangi, Sucharita [1 ]
Rana, Soumendra [1 ]
机构
[1] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Chem Biol Lab, Bhubaneswar 752050, Odisha, India
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2024年 / 128卷 / 19期
关键词
PROTEIN; SPIKE; ANTIBODIES; SERVER;
D O I
10.1021/acs.jpcb.4c00241
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel coronavirus, is the causative agent responsible for the spread of the COVID19 pandemic across the globe. The global impact of the COVID19 pandemic, the successful approval of vaccines for controlling the pandemic, and the further resurgence of COVID19 necessitate the exploration and validation of alternative therapeutic avenues targeting SARS-CoV-2. The initial entry and further invasion by SARS-CoV-2 require strong protein-protein interactions (PPIs) between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptors expressed on the cell surfaces of various tissues. In principle, disruption of the PPIs between the RBD of SARS-CoV-2 and the ACE2 receptor by designer peptides with optimized pharmacology appears to be an ideal choice for potentially preventing viral entry with minimal immunogenicity. In this context, the current study describes a short, synthetic designer peptide (codenamed SR16, <= 18 aa, molecular weight <= 2.5 kDa), which has a few noncoded amino acids, demonstrates a helical conformation in solution, and also engages the RBD of SARS-CoV-2 through a high-affinity interaction, as judged from a battery of biophysical studies. Further, the designer peptide demonstrates resistance to trypsin degradation, appears to be nontoxic to mammalian cells, and also does not induce hemolysis in freshly isolated human erythrocytes. In summary, SR16 appears to be an ideal peptide binder targeting the RBD of SARS-CoV-2, which has the potential for further optimization and development as an antiviral agent targeting SARS-CoV-2
引用
收藏
页码:4631 / 4645
页数:15
相关论文
共 50 条
  • [1] Peptide Binder with High-Affinity for the SARS-CoV-2 Spike Receptor-Binding Domain
    Yu, Lanlan
    Wang, Ruonan
    Wen, Tao
    Liu, Lei
    Wang, Tao
    Liu, Shuli
    Xu, Haiyan
    Wang, Chenxuan
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (25) : 28527 - 28536
  • [2] Designing of peptide aptamer targeting the receptor-binding domain of spike protein of SARS-CoV-2: an in silico study
    Arpita Devi
    Nyshadham S. N. Chaitanya
    [J]. Molecular Diversity, 2022, 26 : 157 - 169
  • [3] De novo design of a stapled peptide targeting SARS-CoV-2 spike protein receptor-binding domain
    Thakkar, Ravindra
    Agarwal, Dilip K.
    Ranaweera, Chathuranga B.
    Ishiguro, Susumu
    Conda-Sheridan, Martin
    Gaudreault, Natasha N.
    Richt, Juergen A.
    Tamura, Masaaki
    Comer, Jeffrey
    [J]. RSC MEDICINAL CHEMISTRY, 2023, 14 (09): : 1722 - 1733
  • [4] Binding of synthetic nanobodies to the SARS-CoV-2 receptor-binding domain: the importance of salt bridges
    Shen, Hujun
    Yang, Hengxiu
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (35) : 24129 - 24142
  • [5] Designing of peptide aptamer targeting the receptor-binding domain of spike protein of SARS-CoV-2: an in silico study
    Devi, Arpita
    Chaitanya, Nyshadham S. N.
    [J]. MOLECULAR DIVERSITY, 2022, 26 (01) : 157 - 169
  • [6] Small Molecules Targeting SARS-CoV-2 Spike Glycoprotein Receptor-Binding Domain
    Rodriguez, Yoel
    Cardoze, Scarlet Martinez
    Obineche, Onyinyechi W.
    Melo, Claudia
    Persaud, Ashanna
    Romero, Jose A. Fernandez
    [J]. ACS OMEGA, 2022, 7 (33): : 28779 - 28789
  • [7] Discovery of Aptamers Targeting the Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein
    Song, Yanling
    Song, Jia
    Wei, Xinyu
    Huang, Mengjiao
    Sun, Miao
    Zhu, Lin
    Lin, Bingqian
    Shen, Haicong
    Zhu, Zhi
    Yang, Chaoyong
    [J]. ANALYTICAL CHEMISTRY, 2020, 92 (14) : 9895 - 9900
  • [8] Antibody targeting of conserved sites of vulnerability on the SARS-CoV-2 spike receptor-binding domain
    Sankhala, Rajeshwer S.
    Dussupt, Vincent
    Chen, Wei-Hung
    Bai, Hongjun
    Martinez, Elizabeth J.
    Jensen, Jaime L.
    Rees, Phyllis A.
    Hajduczki, Agnes
    Chang, William C.
    Choe, Misook
    Yan, Lianying
    Sterling, Spencer L.
    Swafford, Isabella
    Kuklis, Caitlin
    Soman, Sandrine
    King, Jocelyn
    Corbitt, Courtney
    Zemil, Michelle
    Peterson, Caroline E.
    Mendez-Rivera, Letzibeth
    Townsley, Samantha M.
    Donofrio, Gina C.
    Lal, Kerri G.
    Tran, Ursula
    Green, Ethan C.
    Smith, Clayton
    de Val, Natalia
    Laing, Eric D.
    Broder, Christopher C.
    Currier, Jeffrey R.
    Gromowski, Gregory D.
    Wieczorek, Lindsay
    Rolland, Morgane
    Paquin-Proulx, Dominic
    van Dyk, Dewald
    Britton, Zachary
    Rajan, Saravanan
    Loo, Yueh Ming
    McTamney, Patrick M.
    Esser, Mark T.
    Polonis, Victoria R.
    Michael, Nelson L.
    Krebs, Shelly J.
    Modjarrad, Kayvon
    Joyce, M. Gordon
    [J]. STRUCTURE, 2024, 32 (02) : 131 - 147.e7
  • [9] Peptide Inhibitors of the Interaction of the SARS-CoV-2 Receptor-Binding Domain with the ACE2 Cell Receptor
    Bibilashvili, R. Sh.
    Sidorova, M. V.
    Dudkina, U. S.
    Palkeeva, M. E.
    Molokoedov, A. S.
    Kozlovskaya, L. I.
    Egorov, A. M.
    Ishmukhametov, A. A.
    Parfyonova, E. V.
    [J]. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY, 2021, 15 (04) : 274 - 280
  • [10] Peptide Inhibitors of the Interaction of the SARS-CoV-2 Receptor-Binding Domain with the ACE2 Cell Receptor
    R. Sh. Bibilashvili
    M. V. Sidorova
    U. S. Dudkina
    M. E. Palkeeva
    A. S. Molokoedov
    L. I. Kozlovskaya
    A. M. Egorov
    A. A. Ishmukhametov
    E.V. Parfyonova
    [J]. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry, 2021, 15 : 274 - 280