Large-Scale Application of Fault Injection into PyTorch Models - an Extension to PyTorchFI for Validation Efficiency

被引:0
|
作者
Graefe, Ralf [1 ]
Sha, Qutub Syed [1 ,2 ]
Geissler, Florian [1 ]
Paulitsch, Michael [1 ]
机构
[1] Intel Labs, Neubiberg, Germany
[2] Tech Univ Munich, Munich, Germany
关键词
Machine Learning; Neural Networks; fault injection; PyTorch; PyTorchfi; silent data error;
D O I
10.1109/DSN-S58398.2023.00025
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Transient or permanent faults in hardware can render the output of Neural Networks (NN) incorrect without user-specific traces of the error, i.e. silent data errors (SDE). On the other hand, modern NNs also possess an inherent redundancy that can tolerate specific faults. To establish a safety case, it is necessary to distinguish and quantify both types of corruptions. To study the effects of hardware (HW) faults on software (SW) in general and NN models in particular, several fault injection (FI) methods have been established in recent years. Current FI methods focus on the methodology of injecting faults but often fall short of accounting for large-scale FI tests, where many fault locations based on a particular fault model need to be analyzed in a short time. Results need to be concise, repeatable, and comparable. To address these requirements and enable fault injection as the default component in a machine learning development cycle, we introduce a novel fault injection framework called PyTorchALFI (Application Level Fault Injection for PyTorch) based on PyTorchFI. PyTorchALFI provides an efficient way to define randomly generated and reusable sets of faults to inject into PyTorch models, defines complex test scenarios, enhances data sets, and generates test KPIs while tightly coupling fault-free, faulty, and modified NN. In this paper, we provide details about the definition of test scenarios, software architecture, and several examples of how to use the new framework to apply iterative changes in fault location and number, compare different model modifications, and analyze test results.
引用
收藏
页码:56 / 62
页数:7
相关论文
共 50 条
  • [1] LARGE-SCALE NONLINEAR NETWORK MODELS AND THEIR APPLICATION
    DEMBO, RS
    MULVEY, JM
    ZENIOS, SA
    OPERATIONS RESEARCH, 1989, 37 (03) : 353 - 372
  • [2] Large-scale external validation and comparison of prognostic models: an application to chronic obstructive pulmonary disease
    Guerra, Beniamino
    Haile, Sarah R.
    Lamprecht, Bernd
    Ramirez, Ana S.
    Martinez-Camblor, Pablo
    Kaiser, Bernhard
    Alfageme, Inmaculada
    Almagro, Pere
    Casanova, Ciro
    Esteban-Gonzalez, Cristobal
    Soler-Cataluna, Juan J.
    de-Torres, Juan P.
    Miravitlles, Marc
    Celli, Bartolome R.
    Marin, Jose M.
    ter Riet, Gerben
    Sobradillo, Patricia
    Lange, Peter
    Garcia-Aymerich, Judith
    Anto, Josep M.
    Turner, Alice M.
    Han, Meilan K.
    Langhammer, Arnulf
    Leivseth, Linda
    Bakke, Per
    Johannessen, Ane
    Oga, Toru
    Cosio, Borja
    Ancochea-Bermudez, Julio
    Echazarreta, Andres
    Roche, Nicolas
    Burgel, Pierre-Regis
    Sin, Don D.
    Soriano, Joan B.
    Puhan, Milo A.
    BMC MEDICINE, 2018, 16
  • [3] Large-scale external validation and comparison of prognostic models: an application to chronic obstructive pulmonary disease
    Beniamino Guerra
    Sarah R. Haile
    Bernd Lamprecht
    Ana S. Ramírez
    Pablo Martinez-Camblor
    Bernhard Kaiser
    Inmaculada Alfageme
    Pere Almagro
    Ciro Casanova
    Cristóbal Esteban-González
    Juan J. Soler-Cataluña
    Juan P. de-Torres
    Marc Miravitlles
    Bartolome R. Celli
    Jose M. Marin
    Gerben ter Riet
    Patricia Sobradillo
    Peter Lange
    Judith Garcia-Aymerich
    Josep M. Antó
    Alice M. Turner
    Meilan K. Han
    Arnulf Langhammer
    Linda Leivseth
    Per Bakke
    Ane Johannessen
    Toru Oga
    Borja Cosio
    Julio Ancochea-Bermúdez
    Andres Echazarreta
    Nicolas Roche
    Pierre-Régis Burgel
    Don D. Sin
    Joan B. Soriano
    Milo A. Puhan
    BMC Medicine, 16
  • [4] Large-scale fault isolation
    Reddy, A
    Estrin, D
    Govindan, R
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2000, 18 (05) : 733 - 743
  • [5] BIG VERTICAL INJECTION MACHINES TARGET LARGE-SCALE APPLICATION
    SNYDER, MR
    MODERN PLASTICS, 1995, 72 (08): : 21 - 22
  • [6] Pipeline models for large-scale fluid power systems, analysis and validation
    Kajaste, J
    SIXTH SCANDINAVIAN INTERNATIONAL CONFERENCE ON FLUID POWER, VOLS 1 AND 2, 1999, : 529 - 543
  • [7] Consideration of diffuse Sources for the Application of large-scale Propagation Models
    Memmesheimer, M.
    Jakobs, H. J.
    DIFFUSE EMISSIONEN, 2011, 2140 : 55 - 66
  • [8] Current interaction in large-scale wave models with an application to Ireland
    Calvino, Clement
    Dabrowski, Tomasz
    Dias, Frederic
    CONTINENTAL SHELF RESEARCH, 2022, 245
  • [9] Experience with large-scale dynamic model validation - application to industrial plant
    Schmal, J. Pieter
    Verheijen, Peter J. T.
    27TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT A, 2017, 40A : 325 - 330
  • [10] Tools for Enabling Automatic Validation of Large-scale Parallel Application Simulations
    Zhang, Deli
    Hendry, Gilbert
    Dechev, Damian
    2014 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME), 2014, : 601 - 604