Climatology of snow depth and water equivalent measurements in the Italian Alps (1967-2020)

被引:0
|
作者
Ranzi, Roberto [1 ]
Colosio, Paolo [1 ]
Galeati, Giorgio [2 ]
机构
[1] Univ Brescia, Dept Civil Environm Architectural Engn & Math, I-25123 Brescia, Italy
[2] Italian Hydrol Soc, I-40127 Bologna, Italy
关键词
TIME-SERIES; ELEVATION DEPENDENCY; SOUTHERN ALPS; MASS-BALANCE; TRENDS; OSCILLATION; VARIABILITY; PATTERNS; PRECIPITATION; RAINFALL;
D O I
10.5194/hess-28-2555-2024
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
A climatology of snow water equivalent (SWE) based on data collected at 240 gauging sites was performed for the Italian Alps over the 1967-2020 period, when Enel routinely conducted snow depth and density measurements with homogeneous methods. Six hydrological sub-regions were investigated spanning from the eastern Alps to the western Alps at altitudes ranging from 1000 to 3000 m a.s.l. Measurements were conducted at fixed dates at the beginning of each month from 1 February to 1 June and on 15 April. To our knowledge, this is the most comprehensive and homogeneous dataset of measured snow depth and density for the Italian Alps. Significant decreasing trends over the years at all fixed dates and elevation classes were identified for both snow depth, equal to - 0.12 +/- 0.06 m per decade, and snow water equivalent, equal to - 51 +/- 37 mm per decade, on average in the six macro-basins we selected. The analysis of bulk snow density data showed a temporal evolution along the snow accumulation and melt season, but no altitudinal trends were found. A Moving Average and Running Trend Analysis (MARTA triangles), combined with a Pettitt's test change-point detection, highlighted a decreasing change of snow climatology occurring around the end of the 1980s. The comparison with winter temperature and precipitation data from the HISTALP dataset identified a major role played by temperature on the long-term decrease and changing points of snow depth and SWE with respect to precipitation, mainly responsible for its variability. Correlation with climatic indexes indicates significant negative values of the Pearson correlation coefficient with winter North Atlantic Oscillation (NAO) and positive values with winter Western Mediterranean Oscillation (WeMO) for some areas and elevation classes. Results of this climatology are synthesized in a temporal polynomial model that is useful for climatological studies and water resources management in mountain areas.
引用
收藏
页码:2555 / 2578
页数:24
相关论文
共 50 条
  • [1] Estimating the snow water equivalent from snow depth measurements in the Italian Alps
    Guyennon, Nicolas
    Valt, Mauro
    Salerno, Franco
    Petrangeli, Anna Bruna
    Romano, Emanuele
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2019, 167
  • [2] Estimating the snow water equivalent from snow depth measurements in the Swiss Alps
    Jonas, T.
    Marty, C.
    Magnusson, J.
    JOURNAL OF HYDROLOGY, 2009, 378 (1-2) : 161 - 167
  • [3] The distribution of daily snow water equivalent in the central Italian Alps
    Bocchiola, Daniele
    Rosso, Renzo
    ADVANCES IN WATER RESOURCES, 2007, 30 (01) : 135 - 147
  • [4] REGIONAL ESTIMATION OF SNOW WATER EQUIVALENT IN THE ITALIAN ALPS USING KRIGING
    Bocchiola, Daniele
    GEOGRAFIA FISICA E DINAMICA QUATERNARIA, 2010, 33 (01): : 3 - 14
  • [5] A virtual network for estimating daily new snow water equivalent and snow depth in the Swiss Alps
    Egli, Luca
    Jonas, Tobias
    Bettems, Jean-Marie
    ANNALS OF GLACIOLOGY, 2010, 51 (54) : 32 - 38
  • [6] Interpretation of AMSU microwave measurements for the retrievals of snow water equivalent and snow depth
    Kongoli, C
    Grody, NC
    Ferraro, RR
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D24) : 1 - 12
  • [7] Estimating snow depth or snow water equivalent from space
    Dai, LiYun
    Che, Tao
    SCIENCES IN COLD AND ARID REGIONS, 2022, 14 (02): : 79 - 90
  • [8] Estimating snow depth or snow water equivalent from space
    LiYun Dai
    Tao Che
    Sciences in Cold and Arid Regions, 2022, 14 (02) : 79 - 90
  • [9] Spatial interpolation of snow depth and water equivalent measurements in Prince Edward Island, Canada
    Edwards, L
    Bernsdorf, B
    Pauly, M
    Burney, JR
    Satish, MG
    Brimacombe, M
    CANADIAN AGRICULTURAL ENGINEERING, 1998, 40 (03): : 161 - 168
  • [10] Spatial interpolation of snow depth and water equivalent measurements in Prince Edward Island, Canada
    Agriculture & Agri-Food Canada, Charlottetown, Canada
    Can Agric Eng, 3 (161-168):