PAC-Bayes Learning Bounds for Sample-Dependent Priors

被引:0
|
作者
Awasthi, Pranjal [1 ,2 ]
Kale, Satyen [1 ]
Karp, Stefani [1 ,3 ]
Mohri, Mehryar [1 ,4 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] Rutgers State Univ, New Brunswick, NJ 08901 USA
[3] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[4] Courant Inst Math Sci, New York, NY USA
关键词
STABILITY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a series of new PAC-Bayes learning guarantees for randomized algorithms with sample-dependent priors. Our most general bounds make no assumption on the priors and are given in terms of certain covering numbers under the infinite-Renyi divergence and the l(1) distance. We show how to use these general bounds to derive learning bounds in the setting where the sample-dependent priors obey an infinite-Renyi divergence or l(1)-distance sensitivity condition. We also provide a flexible framework for computing PAC-Bayes bounds, under certain stability assumptions on the sample-dependent priors, and show how to use this framework to give more refined bounds when the priors satisfy an infinite-Renyi divergence sensitivity condition.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Data Dependent Priors in PAC-Bayes Bounds
    Shawe-Taylors, John
    Parrado-Hernandez, Emilio
    Ambroladze, Amiran
    [J]. COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, : 231 - 240
  • [2] PAC-Bayes Bounds with Data Dependent Priors
    Parrado-Hernandez, Emilio
    Ambroladze, Amiran
    Shawe-Taylor, John
    Sun, Shiliang
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 3507 - 3531
  • [3] Tighter PAC-Bayes bounds through distribution-dependent priors
    Lever, Guy
    Laviolette, Francois
    Shawe-Taylor, John
    [J]. THEORETICAL COMPUTER SCIENCE, 2013, 473 : 4 - 28
  • [4] PAC-Bayes bounds for stable algorithms with instance-dependent priors
    Rivasplata, Omar
    Parrado-Hernandez, Emilio
    Shawe-Taylor, John
    Sun, Shiliang
    Szepesvari, Csaba
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [5] Distribution-Dependent PAC-Bayes Priors
    Lever, Guy
    Laviolette, Francois
    Shawe-Taylor, John
    [J]. ALGORITHMIC LEARNING THEORY, ALT 2010, 2010, 6331 : 119 - 133
  • [6] Meta-Learning PAC-Bayes Priors in Model Averaging
    Huan, Yimin
    Huan, Weiran
    Li, Liang
    Li, Zhenguo
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 4198 - 4205
  • [7] On the role of data in PAC-Bayes bounds
    Dziugaite, Gintare Karolina
    Hsu, Kyle
    Gharbieh, Waseem
    Arpino, Gabriel
    Roy, Daniel M.
    [J]. 24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130 : 604 - +
  • [8] Generalisation bounds for kernel PCA through PAC-Bayes learning
    Haddouche, Maxime
    Guedj, Benjamin
    Shawe-Taylor, John
    [J]. STAT, 2024, 13 (04):
  • [9] ADAPTIVE META-LEARNING VIA DATA-DEPENDENT PAC-BAYES BOUNDS
    Friedman, Lior
    Meir, Ron
    [J]. CONFERENCE ON LIFELONG LEARNING AGENTS, VOL 232, 2023, 232 : 796 - 810
  • [10] Data-dependent PAC-Bayes priors via differential privacy
    Dziugaite, Gintare Karolina
    Roy, Daniel M.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31