Linear entropy fails to predict entanglement behavior in low-density fermionic systems

被引:0
|
作者
Pauletti, T. [1 ]
Silva, M. A. G. [1 ]
Canella, G. A. [1 ]
Franca, V. V. [1 ]
机构
[1] Sao Paulo State Univ, Inst Chem, BR-14800090 Araraquara, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Entanglement; Quantum phase transitions; Linear entropy; Von Neumann entropy; Hubbard model; Strongly correlated systems; QUANTUM DISCORD; MODEL; TRANSITION; DYNAMICS;
D O I
10.1016/j.physa.2024.129824
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement is considered a fundamental ingredient for quantum technologies, while condensed matter systems are among the good candidates for the development of practical devices for quantum processing. For bipartite pure states the von Neumann entropy is a proper measure of entanglement, while the linear entropy, associated to the mixedness of the reduced density matrices, is a simpler quantity to be obtained and is considered to be qualitatively equivalent to the von Neumann. Here we investigate both linear and von Neumann entropies for quantifying entanglement in homogeneous, superlattice and disordered Hubbard chains. We find that for low densities systems (n less than or similar to 0.6) the linear entropy fails in reproducing the qualitative behavior of the von Neumann entropy. This then may lead to incorrect predictions (i) of maximum and minimum entanglement states and (ii) of quantum phase transitions.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] ELONGATIONAL BEHAVIOR OF LOW-DENSITY LINEAR LOW-DENSITY POLYETHYLENES
    LAMANTIA, FP
    VALENZA, A
    ACIERNO, D
    POLYMER ENGINEERING AND SCIENCE, 1988, 28 (02): : 90 - 95
  • [2] Entropy and Entanglement Bounds for Reduced Density Matrices of Fermionic States
    Eric A. Carlen
    Elliott H. Lieb
    Robin Reuvers
    Communications in Mathematical Physics, 2016, 344 : 655 - 671
  • [3] Entropy and Entanglement Bounds for Reduced Density Matrices of Fermionic States
    Carlen, Eric A.
    Lieb, Elliott H.
    Reuvers, Robin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 344 (03) : 655 - 671
  • [4] Nonlinear behavior of linear low-density polyethylene
    Rand, JL
    Henderson, JK
    Grant, DA
    POLYMER ENGINEERING AND SCIENCE, 1996, 36 (08): : 1058 - 1064
  • [5] Linear low-density polyoxymethylene versus linear low-density polyethylene
    Ilg, Andrea D.
    Price, Craig J.
    Miller, Stephen A.
    MACROMOLECULES, 2007, 40 (22) : 7739 - 7741
  • [6] Bounds on the entanglement entropy by the number entropy in non-interacting fermionic systems
    Kiefer-Emmanouilidis, Maximilian
    Unanyan, Razmik
    Sirker, Jesko
    Fleischhauer, Michael
    SCIPOST PHYSICS, 2020, 8 (06):
  • [7] BLENDS OF LINEAR LOW-DENSITY AND LOW-DENSITY POLYETHYLENE
    HAGHIGHAT, S
    BIRLEY, AW
    PLASTICS AND RUBBER PROCESSING AND APPLICATIONS, 1990, 13 (03): : 197 - 200
  • [8] STATIC FATIGUE BEHAVIOR OF LINEAR LOW-DENSITY POLYETHYLENES
    YEH, JT
    CHEN, CY
    HONG, HS
    JOURNAL OF MATERIALS SCIENCE, 1994, 29 (15) : 4104 - 4112
  • [9] Modeling of the linear viscoelastic behavior of low-density polyethylene
    Stanescu, P
    Majesté, JC
    Carrot, C
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2005, 43 (15) : 1973 - 1985
  • [10] Spherulitic crystallization behavior of linear low-density polyethylene
    Feng, L
    Kamal, MR
    POLYMER ENGINEERING AND SCIENCE, 2005, 45 (01): : 74 - 83