An Adaptive Nonlinear Least-Squares Finite Element Method for a Pucci Equation in Two Dimensions

被引:0
|
作者
Brenner, Susanne C. [1 ,2 ]
Sung, Li-Yeng [1 ,2 ]
Tan, Zhiyu [3 ,4 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[4] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performan, Xiamen 361005, Fujian, Peoples R China
基金
美国国家科学基金会;
关键词
Pucci equation; nonlinear least-squares; finite element; adaptive; OPTIMAL CONVERGENCE RATE; ACTIVE SET ALGORITHM; NUMERICAL-SOLUTION; SEGREGATION; REFINEMENT;
D O I
10.4208/eajam.2023-277.150124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an adaptive nonlinear least-squares finite element method for a two dimensional Pucci equation. The efficiency of the method is demonstrated by a numerical experiment.
引用
收藏
页码:451 / 459
页数:9
相关论文
共 50 条
  • [1] An adaptive least-squares mixed finite element method for nonlinear parabolic problems
    Gu H.
    Li H.
    [J]. Computational Mathematics and Modeling, 2009, 20 (2) : 192 - 206
  • [2] Optimal adaptive grids of least-squares finite element methods in two spatial dimensions
    Chang, Shin-Perng
    Chen, Tsu-Fen
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (13) : 3817 - 3824
  • [3] A weighted adaptive least-squares finite element method for the Poisson-Boltzmann equation
    Chaudhry, Jehanzeb Hameed
    Bond, Stephen D.
    Olson, Luke N.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 4892 - 4902
  • [4] A LEAST-SQUARES FINITE-ELEMENT METHOD FOR THE HELMHOLTZ-EQUATION
    CHANG, CL
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1990, 83 (01) : 1 - 7
  • [5] Least-squares mixed finite element method for a class of stokes equation
    Haiming G.
    Danping Y.
    Shulin S.
    Xinmin L.
    [J]. Applied Mathematics and Mechanics, 2000, 21 (5): : 557 - 566
  • [6] Least-squares mixed finite element method for a class of Stokes equation
    Gu, HM
    Yang, DP
    Sui, SL
    Liu, XM
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2000, 21 (05) : 557 - 566
  • [7] Implementation of least-squares finite element method for solving the Poisson equation
    Arushanian, IO
    Axelsson, O
    Kobelkov, GM
    [J]. ENUMATH 97 - 2ND EUROPEAN CONFERENCE ON NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 1998, : 125 - 131
  • [8] LEAST-SQUARES MIXED FINITE ELEMENT METHOD FOR A CLASS OF STOKES EQUATION
    顾海明
    羊丹平
    隋树林
    刘新民
    [J]. Applied Mathematics and Mechanics(English Edition), 2000, (05) : 557 - 566
  • [9] Least-squares finite element method for the advection-diffusion equation
    Dag, I
    Irk, D
    Tombul, M
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 173 (01) : 554 - 565
  • [10] An adaptive least-squares mixed finite element method for the Signorini problem
    Krause, Rolf
    Mueller, Benjamin
    Starke, Gerhard
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (01) : 276 - 289