Confocal parabolic billiard with gravitational potential: Classical and quantum description

被引:0
|
作者
Rodriguez-Gonzalez, Marcelo [1 ]
Gutierrez-Vega, Julio C. [1 ]
机构
[1] Tecnol Monterrey, Photon & Math Opt Grp, Monterrey 64849, Mexico
关键词
Parabolic billiards; Hamilton-Jacobi theory; Quantum corrals; Parabolic coordinates; INFINITE WELL;
D O I
10.1016/j.cnsns.2024.108174
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the classical and quantum dynamics of a particle trapped in a gravitational confocal parabolic billiard. Characterizing the equi-momentum surfaces and the Poincar & eacute; phase maps reveals four different kinds of motion the particle can exhibit. The analytical expressions of the characteristic equations for getting periodic orbits and their periods were derived and validated numerically. A notable finding is the possibility of having degenerate periodic trajectories with the same energy but different second constants of motion and caustics. Eigenstates of the particle with definite values of the constants of motion can be associated with classical orbits with the same pair of constants. To make this correspondence we use periodic orbits.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Classical and quantum confocal parabolic billiards
    Villarreal-Zepeda, Barbara K.
    Iga-Buitron, Hector M.
    Gutierrez-Vega, Julio C.
    AMERICAN JOURNAL OF PHYSICS, 2021, 89 (12) : 1113 - 1122
  • [2] Elliptic billiard with harmonic potential: Classical description
    Barrera, Bernardo
    Ruz-Cuen, Juan P.
    Gutierrez-Vega, Julio C.
    PHYSICAL REVIEW E, 2023, 108 (03)
  • [3] Classical and quantum chaos in the generalized parabolic lemon-shaped billiard
    Lopac, V.
    Mrkonjic, I.
    Radic, D.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (1-B):
  • [4] Classical and quantum chaos in the generalized parabolic lemon-shaped billiard
    Lopac, V
    Mrkonjic, I
    Radic, D
    PHYSICAL REVIEW E, 1999, 59 (01) : 303 - 311
  • [5] Classical solutions for a free particle in a confocal elliptic billiard
    Bandres, MA
    Gutiérrez-Vega, JC
    AMERICAN JOURNAL OF PHYSICS, 2004, 72 (06) : 810 - 817
  • [6] QUANTUM AND CLASSICAL DYNAMICS IN THE STADIUM BILLIARD
    CHRISTOFFEL, KM
    BRUMER, P
    PHYSICAL REVIEW A, 1986, 33 (02): : 1309 - 1321
  • [7] Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas
    Fokicheva V.V.
    Moscow University Mathematics Bulletin, 2014, 69 (4) : 148 - 158
  • [8] Classical system underlying a diffracting quantum billiard
    Jain, Manan
    PRAMANA-JOURNAL OF PHYSICS, 2018, 90 (02):
  • [9] Classical system underlying a diffracting quantum billiard
    Manan Jain
    Pramana, 2018, 90
  • [10] CLASSICAL AND QUANTUM CHAOS OF THE WEDGE BILLIARD .1. CLASSICAL MECHANICS
    SZEREDI, T
    GOODINGS, DA
    PHYSICAL REVIEW E, 1993, 48 (05): : 3518 - 3528