Existence of nodal solutions to some nonlinear boundary value problems for ordinary differential equations of fourth order

被引:0
|
作者
Aliyev, Ziyatkhan S. [1 ,2 ]
Aliyeva, Yagut N. [2 ,3 ]
机构
[1] Baku State Univ, AZ-1148 Baku, Azerbaijan
[2] Minist Sci & Educ Republ Azerbaijan, Inst Math & Mech, AZ-1148 Baku, Azerbaijan
[3] French Azerbaijani Univ, AZ-1000 Baku, Azerbaijan
关键词
nonlinear problem; eigenvalue parameter; bifurcation point; nodal solution; component; GLOBAL BIFURCATION; POSITIVE SOLUTIONS; MULTIPLICITY;
D O I
10.14232/ejqtde.2024.1.25
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of nodal solutions of some nonlinear boundary value problems for ordinary differential equations of fourth order with a spectral parameter in the boundary condition. To do this, we first study the global bifurcation of solutions from zero and infinity of the corresponding nonlinear eigenvalue problems in classes with a fixed oscillation count. Then, using these global bifurcation results, we prove the existence of solutions of the considered nonlinear boundary value problems with a fixed number of nodes.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条