Deep learning for flow observables in high energy heavy-ion collisions

被引:1
|
作者
Hirvonen, Henry [1 ,2 ]
Eskola, Kari J. [1 ,2 ]
Niemi, Harri [1 ,2 ]
机构
[1] Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland
[2] Univ Helsinki, Helsinki Inst Phys, POB 64, FI-00014 Helsinki, Finland
基金
欧洲研究理事会; 芬兰科学院;
关键词
D O I
10.1051/epjconf/202429602002
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
We demonstrate how deep convolutional neural networks can be trained to predict 2+1 D hydrodynamic simulation results for flow coefficients, mean-p(T) and charged particle multiplicity from the initial energy density profile. We show that this method provides results that are accurate enough, so that one can use neural networks to reliably estimate multi-particle flow correlators. Additionally, we train networks that can take any model parameter as an additional input and demonstrate with a few examples that the accuracy remains good. The usage of neural networks can reduce the computation time needed in performing Bayesian analyses with multi-particle flow correlators by many orders of magnitude.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Deep learning for flow observables in ultrarelativistic heavy-ion collisions
    Hirvonen, H.
    Eskola, K. J.
    Niemi, H.
    PHYSICAL REVIEW C, 2023, 108 (03)
  • [2] Review of Deep Learning in High-Energy Heavy-Ion Collisions
    Zheng, Shiqi
    Liu, Jiamin
    SYMMETRY-BASEL, 2024, 16 (11):
  • [3] Observables for longitudinal flow correlations in heavy-ion collisions
    Jia, Jiangyong
    Huo, Peng
    Ma, Guoliang
    Nie, Maowu
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2017, 44 (07)
  • [4] SCALING BEHAVIOR OF OBSERVABLES IN HEAVY-ION COLLISIONS
    BONASERA, A
    CSERNAI, LP
    SCHURMANN, B
    NUCLEAR PHYSICS A, 1988, 476 (01) : 159 - 188
  • [5] Determination of the impact parameter in high-energy heavy-ion collisions via deep learning
    相培
    赵渊晟
    黄旭光
    Chinese Physics C, 2022, 46 (07) : 182 - 190
  • [6] Determination of the impact parameter in high-energy heavy-ion collisions via deep learning
    Xiang, Pei
    Zhao, Yuan-Sheng
    Huang, Xu-Guang
    CHINESE PHYSICS C, 2022, 46 (07)
  • [7] Several observables sensitive to the symmetry energy in heavy-ion collisions induced by high energy radioactive beams
    Yong, GC
    Li, BA
    Zuo, W
    CHINESE PHYSICS, 2005, 14 (08): : 1549 - 1553
  • [8] Flow vorticity in peripheral high-energy heavy-ion collisions
    Csernai, L. P.
    Magas, V. K.
    Wang, D. J.
    PHYSICAL REVIEW C, 2013, 87 (03):
  • [9] Collectivity in High Energy Heavy-Ion Collisions
    Nasim, Md.
    Shi, Shusu
    Chatterjee, Sandeep
    Singha, Subhash
    Roy, Victor
    ADVANCES IN HIGH ENERGY PHYSICS, 2017, 2017
  • [10] Jet Tomography in Heavy-Ion Collisions with Deep Learning
    Du, Yi-Lun
    Pablos, Daniel
    Tywoniuk, Konrad
    PHYSICAL REVIEW LETTERS, 2022, 128 (01)