Deep learning for flow observables in high energy heavy-ion collisions
被引:1
|
作者:
Hirvonen, Henry
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland
Univ Helsinki, Helsinki Inst Phys, POB 64, FI-00014 Helsinki, FinlandUniv Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland
Hirvonen, Henry
[1
,2
]
Eskola, Kari J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland
Univ Helsinki, Helsinki Inst Phys, POB 64, FI-00014 Helsinki, FinlandUniv Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland
Eskola, Kari J.
[1
,2
]
Niemi, Harri
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland
Univ Helsinki, Helsinki Inst Phys, POB 64, FI-00014 Helsinki, FinlandUniv Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland
Niemi, Harri
[1
,2
]
机构:
[1] Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland
[2] Univ Helsinki, Helsinki Inst Phys, POB 64, FI-00014 Helsinki, Finland
We demonstrate how deep convolutional neural networks can be trained to predict 2+1 D hydrodynamic simulation results for flow coefficients, mean-p(T) and charged particle multiplicity from the initial energy density profile. We show that this method provides results that are accurate enough, so that one can use neural networks to reliably estimate multi-particle flow correlators. Additionally, we train networks that can take any model parameter as an additional input and demonstrate with a few examples that the accuracy remains good. The usage of neural networks can reduce the computation time needed in performing Bayesian analyses with multi-particle flow correlators by many orders of magnitude.
机构:
SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
Brookhaven Natl Lab, Phys Dept, Upton, NY 11796 USASUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
Jia, Jiangyong
Huo, Peng
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USASUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
Huo, Peng
Ma, Guoliang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R ChinaSUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
Ma, Guoliang
Nie, Maowu
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaSUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
机构:
Department of Physics and Center for Field Theory and Particle Physics, Fudan UniversityDepartment of Physics and Center for Field Theory and Particle Physics, Fudan University
相培
赵渊晟
论文数: 0引用数: 0
h-index: 0
机构:
Department of Physics and Center for Field Theory and Particle Physics, Fudan UniversityDepartment of Physics and Center for Field Theory and Particle Physics, Fudan University
赵渊晟
黄旭光
论文数: 0引用数: 0
h-index: 0
机构:
Department of Physics and Center for Field Theory and Particle Physics, Fudan University
Key Laboratory of Nuclear Physics and Ion-beam Application(MOE), Fudan UniversityDepartment of Physics and Center for Field Theory and Particle Physics, Fudan University
机构:
Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
Fudan Univ, Ctr Field Theory & Particle Phys, Shanghai 200433, Peoples R ChinaFudan Univ, Dept Phys, Shanghai 200433, Peoples R China
Xiang, Pei
Zhao, Yuan-Sheng
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
Fudan Univ, Ctr Field Theory & Particle Phys, Shanghai 200433, Peoples R ChinaFudan Univ, Dept Phys, Shanghai 200433, Peoples R China
Zhao, Yuan-Sheng
Huang, Xu-Guang
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
Fudan Univ, Ctr Field Theory & Particle Phys, Shanghai 200433, Peoples R China
Fudan Univ, Key Lab Nucl Phys & Ion Beam Applicat MOE, Shanghai 200433, Peoples R ChinaFudan Univ, Dept Phys, Shanghai 200433, Peoples R China