Protocol for fast clonal family inference and analysis from large-scale B cell receptor repertoire sequencing data

被引:1
|
作者
Wang, Kaixuan [1 ]
Cai, Linru [1 ]
Wang, Hao [1 ,2 ]
Shan, Shiwen [1 ]
Hu, Xihao [3 ]
Zhang, Jian [1 ]
机构
[1] Tianjin Univ, Acad Med Engn & Translat Med, Tianjin, Peoples R China
[2] Tianjin Univ, Georgia Tech Shenzhen Inst GTSI, Shenzhen, Guangdong, Peoples R China
[3] GV20 Therapeut, Cambridge, MA USA
来源
STAR PROTOCOLS | 2024年 / 5卷 / 02期
基金
中国国家自然科学基金;
关键词
MECHANISM; PACKAGE;
D O I
10.1016/j.xpro.2024.102969
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The expeditious identification and comprehensive analysis of clonal families from extensive B cell receptor (BCR) repertoire sequencing data are imperative for elucidating the intricacies of B cell immune responses. Here, we introduce a computational pipeline designed to swiftly deduce clonal families from bulk BCR heavy -chain sequencing data, accompanied by a suite of functional modules tailored to streamline post -clustering analysis. The outlined methodology encompasses guidelines for software installation, meticulous data preparation, and the systematic inference and analysis of clonal families. For complete details on the use and execution of this protocol, please refer to Wang et al. 1
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Fast clonal family inference from large-scale B cell repertoire sequencing data
    Wang, Kaixuan
    Hu, Xihao
    Zhang, Jian
    [J]. CELL REPORTS METHODS, 2023, 3 (10):
  • [2] Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data
    Gupta, Namita T.
    Vander Heiden, Jason A.
    Uduman, Mohamed
    Gadala-Maria, Daniel
    Yaari, Gur
    Kleinstein, Steven H.
    [J]. BIOINFORMATICS, 2015, 31 (20) : 3356 - 3358
  • [3] Scalable Algorithms for Bayesian Inference of Large-Scale Models from Large-Scale Data
    Ghattas, Omar
    Isaac, Tobin
    Petra, Noemi
    Stadler, Georg
    [J]. HIGH PERFORMANCE COMPUTING FOR COMPUTATIONAL SCIENCE - VECPAR 2016, 2017, 10150 : 3 - 6
  • [4] A Computational Framework for Large-Scale Analysis of TCRβ Immune Repertoire Sequencing Data on Cloud-Based Infrastructure
    Lin, L.
    Looney, T.
    Lowman, G. M.
    Linch, E. A.
    Topacio-Hall, D. S.
    Miller, L.
    Zheng, J.
    Pankov, A.
    Au-Young, J. K.
    Manivannan, M.
    Kamat, A.
    Andersen, M. R.
    Hyland, F. C.
    [J]. JOURNAL OF MOLECULAR DIAGNOSTICS, 2017, 19 (06): : 992 - 993
  • [5] Practical guidelines for B-cell receptor repertoire sequencing analysis
    Yaari, Gur
    Kleinstein, Steven H.
    [J]. GENOME MEDICINE, 2015, 7
  • [6] Practical guidelines for B-cell receptor repertoire sequencing analysis
    Gur Yaari
    Steven H. Kleinstein
    [J]. Genome Medicine, 7
  • [7] Rapid Inference of Direct Interactions in Large-Scale Ecological Networks from Heterogeneous Microbial Sequencing Data
    Tackmann, Janko
    Frederico, Joao
    Rodrigues, Matias
    von Mering, Christian
    [J]. CELL SYSTEMS, 2019, 9 (03) : 286 - +
  • [8] Optimized Threshold Inference for Partitioning of Clones From High-Throughput B Cell Repertoire Sequencing Data
    Nouri, Nima
    Kleinstein, Steven H.
    [J]. FRONTIERS IN IMMUNOLOGY, 2018, 9
  • [9] Mango: Exploratory Data Analysis for Large-Scale Sequencing Datasets
    Morrow, Alyssa Kramer
    He, George Zhixuan
    Nothaft, Frank Austin
    Tu, Eric Tongching
    Paschall, Justin
    Yosef, Nir
    Joseph, Anthony Douglas
    [J]. CELL SYSTEMS, 2019, 9 (06) : 609 - +
  • [10] Pathogenicity of Rasmussen Encephalitis CD8+Lymphocytes Elucidated by Large-Scale Sequencing of the T-Cell Receptor Repertoire
    Schneider-Hohendorf, Tilman
    Mohan, Hema
    Breuer, Johanna
    Becker, Albert
    Bien, Christian
    Kuhlmann, Tanja
    Dommair, Klaus
    Kurlemann, Gerhard
    Wiendl, Heinz
    Schwab, Nicholas
    [J]. NEUROLOGY, 2016, 86