Adaptive filtering for microelectromechanical inertial sensors using empirical mode decomposition, Hausdorff distance and fractional Gaussian noise modeling

被引:0
|
作者
Campello, Joao [1 ]
Santos, Daniel [1 ]
Pinto, Marcos [1 ]
机构
[1] Inst Mil Engn, Praca Gen Tiburcio 80, BR-22290270 Rio De Janeiro, RJ, Brazil
关键词
Inertial sensors; Empirical mode decomposition; Fractional Gaussian noise; Inertial navigation system; Hausdorff distance; Signal denoising; HILBERT SPECTRUM; EMD;
D O I
10.1016/j.dsp.2024.104610
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a denoising technique for inertial sensors based on Empirical Mode Decomposition (EMD). The method uses the fractional Gaussian noise (fGn) model to accurately quantify errors, addressing the complex nature of sensor noise encompassing both Gaussian white and colored components. A modified Hausdorff Distance technique is integrated with the fGn energy model to categorize the resulting Intrinsic Mode Functions (IMFs) into dominant noise, dominant information, and mixed components. The relevant signal IMFs are selectively chosen, while the mixed IMFs undergo hard thresholding before recombination for optimized signal reconstruction. Comparative assessments with conventional wavelet transform, Savitzky Golay, and Moving Average filtering methodologies validate our approach, including analysis via Allan Variance (AVAR), realistic dynamic scenario simulations, and an inertial navigation algorithm implementation. Leveraging data from Microelectromechanical System sensors, our noise removal technique outperforms the other methods in all these analyses. We observe nearly complete suppression of white noise and an approximate 5% reduction in colored noise. Additionally, a 90% decrease in mean squared error and a 10% extension in GNSS-denied navigation duration are noted relative to the original data.
引用
收藏
页数:15
相关论文
共 38 条
  • [1] Noise filtering using Empirical Mode Decomposition
    Boudraa, A. O.
    CCexus, J.
    Benramdane, S.
    Beghdadi, A.
    2007 9TH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOLS 1-3, 2007, : 1409 - +
  • [2] Empirical mode decomposition, fractional Gaussian noise and hurst exponent estimation
    Rilling, G
    Flandrin, P
    Gonçalvès, P
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 489 - 492
  • [3] Gaussian Noise Filtering from ECG by Wiener Filter and Ensemble Empirical Mode Decomposition
    Chang, Kang-Ming
    Liu, Shing-Hong
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2011, 64 (02): : 249 - 264
  • [4] Gaussian Noise Filtering from ECG by Wiener Filter and Ensemble Empirical Mode Decomposition
    Kang-Ming Chang
    Shing-Hong Liu
    Journal of Signal Processing Systems, 2011, 64 : 249 - 264
  • [5] Decomposition of machining error for surfaces using complete ensemble empirical mode decomposition with adaptive noise
    Chen, Yueping
    Xu, Jiahe
    Tang, Qingchun
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2021, 34 (10) : 1049 - 1066
  • [6] Epilepsy seizure detection using complete ensemble empirical mode decomposition with adaptive noise
    Hassan, Ahnaf Rashik
    Subasi, Abdulhamit
    Zhang, Yanchun
    KNOWLEDGE-BASED SYSTEMS, 2020, 191 (191)
  • [7] Adaptive Filtering of Electrocardiogram Signal Using Hybrid Empirical Mode Decomposition-Jaya algorithm
    Bodile, Roshan
    Rao, T. V. K. Hanumantha
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2021, 30 (12)
  • [8] Hyperspectral Image Classification Using Fast and Adaptive Bidimensional Empirical Mode Decomposition With Minimum Noise Fraction
    Yang, Ming-Der
    Huang, Kai-Shiang
    Yang, Yeh Fen
    Lu, Liang-You
    Feng, Zheng-Yi
    Tsai, Hui Ping
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (12) : 1950 - 1954
  • [9] Multiple-Reflection Noise Attenuation Using Adaptive Randomized-Order Empirical Mode Decomposition
    Chen, Wei
    Xie, Jianyong
    Zu, Shaohuan
    Gan, Shuwei
    Chen, Yangkang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (01) : 18 - 22
  • [10] Adaptive Clutter Filtering for Ultrafast Doppler Imaging of Blood Flow Using Fast Multivariate Empirical Mode Decomposition
    Lang, Xun
    He, Bingbing
    Zhang, Yufeng
    Chen, Qiming
    Xie, Lei
    INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,