Pathwise-randomness and models of second-order arithmetic

被引:0
|
作者
Barmpalias, George [1 ]
Wang, Wei [2 ]
机构
[1] Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Beijing, Peoples R China
[2] Sun Yat Sen Univ, Inst Log & Cognit, Dept Philosophy, Guangzhou, Peoples R China
关键词
MARTIN-LOF RANDOMNESS; ALGORITHMIC RANDOMNESS; RAMSEYS THEOREM;
D O I
10.1016/j.ic.2024.105181
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A tree is pathwise-random if all of its paths are Martin-U & ouml;f random. We show that: (a) no weakly 2-random real computes a perfect pathwise-random tree; it follows that the class of perfect pathwise-random trees is null, with respect to any computable measure; (b) there exists a positive-measure pathwise-random tree which does not compute any complete extension of Peano arithmetic; and (c) there exists a perfect pathwise-random tree which does not compute any tree of positive measure and finite randomness deficiency. We then obtain models of second-order arithmetic that separate principles below weak K & ouml;nigs lemma. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Pathwise definition of second-order SDEs
    Quer-Sardanyons, Lluis
    Tindel, Samy
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (02) : 466 - 497
  • [2] NOTION OF EXTENSION FOR MODELS OF FULL SECOND-ORDER ARITHMETIC
    ARTIGUE, M
    ISAMBERT, E
    PERRIN, MJ
    ZALC, A
    [J]. BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1973, 21 (12): : 1087 - 1091
  • [3] Subsystems of second-order arithmetic
    Ketland, J
    [J]. BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 2001, 52 (01): : 191 - 195
  • [4] Second-Order Arithmetic Sans Sets†
    Berk, Lon
    [J]. PHILOSOPHIA MATHEMATICA, 2013, 21 (03) : 339 - 350
  • [5] THE PREHISTORY OF THE SUBSYSTEMS OF SECOND-ORDER ARITHMETIC
    Dean, Walter
    Walsh, Sean
    [J]. REVIEW OF SYMBOLIC LOGIC, 2017, 10 (02): : 357 - 396
  • [6] The limits of determinacy in second-order arithmetic
    Montalban, Antonio
    Shore, Richard A.
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2012, 104 : 223 - 252
  • [7] Second-order sca security with almost no fresh randomness
    Shahmirzadi, Aein Rezaei
    Moradi, Amir
    [J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021, 2021 (03): : 708 - 755
  • [8] A Low-Randomness Second-Order Masked AES
    Beyne, Tim
    Dhooghe, Siemen
    Ranea, Adrian
    Sijacic, Danilo
    [J]. SELECTED AREAS IN CRYPTOGRAPHY, 2022, 13203 : 87 - 110
  • [9] Rich ω-words and monadic second-order arithmetic
    Staiger, L
    [J]. COMPUTER SCIENCE LOGIC, 1998, 1414 : 478 - 490
  • [10] A transfer principle for second-order arithmetic, and applications
    Carl, Merlin
    Jamneshan, Asgar
    [J]. JOURNAL OF LOGIC AND ANALYSIS, 2018, 10 : 1 - 32