Learning Robust and Sparse Principal Components With the α-Divergence

被引:0
|
作者
Rekavandi, Aref Miri [1 ]
Seghouane, Abd-Krim [2 ]
Evans, Robin J. [1 ]
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Parkville, Vic 3052, Australia
[2] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3052, Australia
基金
澳大利亚研究理事会;
关键词
Principal component analysis; Vectors; Loading; Sparse matrices; Robustness; Covariance matrices; Probabilistic logic; Robust learning; principal component analysis; alpha-divergence; sparsity; maximum likelihood estimator; FMRI DATA; PCA; ALGORITHMS; PROJECTION; OUTLIERS; COMPLEX; IMAGE;
D O I
10.1109/TIP.2024.3403493
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, novel robust principal component analysis (RPCA) methods are proposed to exploit the local structure of datasets. The proposed methods are derived by minimizing the alpha - divergence between the sample distribution and the Gaussian density model. The alpha -divergence is used in different frameworks to represent variants of RPCA approaches including orthogonal, non-orthogonal, and sparse methods. We show that the classical PCA is a special case of our proposed methods where the alpha - divergence is reduced to the Kullback-Leibler (KL) divergence. It is shown in simulations that the proposed approaches recover the underlying principal components (PCs) by down-weighting the importance of structured and unstructured outliers. Furthermore, using simulated data, it is shown that the proposed methods can be applied to fMRI signal recovery and Foreground-Background (FB) separation in video analysis. Results on real world problems of FB separation as well as image reconstruction are also provided.
引用
收藏
页码:3441 / 3455
页数:15
相关论文
共 50 条
  • [1] Robust functional principal components for sparse longitudinal data
    Boente, Graciela
    Salibian-Barrera, Matias
    [J]. METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2021, 79 (02): : 159 - 188
  • [2] Robust functional principal components for sparse longitudinal data
    Graciela Boente
    Matías Salibián-Barrera
    [J]. METRON, 2021, 79 : 159 - 188
  • [3] ROBUST PRINCIPAL COMPONENTS
    AMMANN, LP
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1989, 18 (03) : 857 - 874
  • [4] ROBUST STRUCTURED DICTIONARY LEARNING FOR BLOCK SPARSE REPRESENTATIONS USING α-DIVERGENCE
    Seghouane, Abd-Krim
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 843 - 847
  • [5] Robust and Sparse Regression via γ-Divergence
    Kawashima, Takayuki
    Fujisawa, Hironori
    [J]. ENTROPY, 2017, 19 (11):
  • [6] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    [J]. Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [7] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    [J]. TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [8] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [9] SPARSE AND FUNCTIONAL PRINCIPAL COMPONENTS ANALYSIS
    Allen, Genevera I.
    Weylandt, Michael
    [J]. 2019 IEEE DATA SCIENCE WORKSHOP (DSW), 2019, : 11 - 16
  • [10] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    [J]. Science China Information Sciences, 2014, 57 : 1 - 14