Solar magnetic flux rope identification with GUITAR: GUI for Tracking and Analysing flux Ropes

被引:0
|
作者
Wagner, Andreas [1 ,2 ]
Price, Daniel J. [1 ]
Bourgeois, Slava [3 ,4 ]
Pomoell, Jens [1 ]
Poedts, Stefaan [2 ,5 ]
Kilpua, Emilia K. J. [1 ]
机构
[1] Univ Helsinki, Dept Phys, Helsinki, Finland
[2] Katholieke Univ Leuven, Dept Math, CmPA, Leuven, Belgium
[3] Univ Coimbra, Dept Phys, Inst Astrofis & Ciencias Espaco, Coimbra, Portugal
[4] Univ Sheffield, Solar Phys & Space Plasma Res Ctr SP2RC, Sch Math & Stat, Sheffield, England
[5] Univ Maria Curie Sklodowska, Inst Phys, Lublin, Poland
基金
芬兰科学院; 欧盟地平线“2020”;
关键词
Sun; magnetic flux ropes; GUI; solar eruptions; modelling;
D O I
10.3389/fspas.2024.1383072
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Modelling the early evolution of magnetic flux ropes (MFRs) in the solar atmosphere is crucial for understanding their destabilization and eruption mechanism. Identifying the relevant magnetic field lines in simulation data, however, is not straightforward. In previous work an extraction and tracking method was developed to facilitate this task. Here, we present the corresponding graphical user interface (GUI), called GUITAR (GUI for Tracking and Analysing flux Ropes), with the aim to offer a variety of tools to the community for identifying and tracking MFRs. The starting point is a map of a selected proxy parameter for MFRs, e.g., a map of the twist-parameter T w , current density, etc. We showcase how the GUITAR tools can be used to disentangle a multi-MFR system and facilitate in-depth analysis of their properties and evolution by applying them on a time-dependent data-driven magnetofrictional model (TMFM) simulation of solar active region AR12473. We show the MFR extraction using T w maps, together with targeted use of mathematical morphology algorithms and discuss the evolution of the system.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Solar Magnetic Flux Ropes
    Boris Filippov
    Olesya Martsenyuk
    Abhishek K. Srivastava
    Wahab Uddin
    [J]. Journal of Astrophysics and Astronomy, 2015, 36 : 157 - 184
  • [2] Solar Magnetic Flux Ropes
    Filippov, Boris
    Martsenyuk, Olesya
    Srivastava, Abhishek K.
    Uddin, Wahab
    [J]. JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2015, 36 (01) : 157 - 184
  • [3] Eruption of Solar Magnetic Flux Ropes Caused by Flux Feeding
    Zhang, Quanhao
    Wang, Yuming
    Liu, Rui
    Zhang, Jie
    Hu, Youqiu
    Wang, Wensi
    Zhuang, Bin
    Li, Xiaolei
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2020, 898 (01)
  • [4] The automatic identification and tracking of coronal flux ropes
    Wagner A.
    Bourgeois S.
    Kilpua E.K.J.
    Sarkar R.
    Price D.J.
    Kumari A.
    Pomoell J.
    Poedts S.
    Barata T.
    Erdélyi R.
    Oliveira O.
    Gafeira R.
    [J]. Astronomy and Astrophysics, 2024, 683
  • [5] On magnetic reconnection and flux rope topology in solar flux emergence
    MacTaggart, D.
    Haynes, A. L.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 438 (02) : 1500 - 1506
  • [6] DOWNWARD CATASTROPHE OF SOLAR MAGNETIC FLUX ROPES
    Zhang, Quanhao
    Wang, Yuming
    Hu, Youqiu
    Liu, Rui
    [J]. ASTROPHYSICAL JOURNAL, 2016, 825 (02):
  • [7] Preface: Magnetic flux ropes in solar environments
    Mandrini, Cristina H.
    Schmieder, Brigitte
    [J]. ADVANCES IN SPACE RESEARCH, 2022, 70 (06) : 1547 - 1548
  • [8] Reconstruction of magnetic flux ropes in the solar wind
    Hu, Q
    Sonnerup, BUÖ
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (03) : 467 - 470
  • [9] Modeling magnetic flux ropes in the solar atmosphere
    van Ballegooijen, A. A.
    DeLuca, E. E.
    Squires, K.
    Mackay, D. H.
    [J]. JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2007, 69 (1-2) : 24 - 31
  • [10] Distorted-toroidal Flux Rope Model for Heliospheric Flux Ropes
    Nieves-Chinchilla, Teresa
    Hidalgo, Miguel Angel
    Cremades, Hebe
    [J]. ASTROPHYSICAL JOURNAL, 2023, 947 (02):