Survival Outcome Prediction in Glioblastoma: Insights from MRI Radiomics

被引:1
|
作者
Styliara, Effrosyni I. [1 ]
Astrakas, Loukas G. [2 ]
Alexiou, George [3 ]
Xydis, Vasileios G. [1 ]
Zikou, Anastasia [1 ]
Kafritsas, Georgios [3 ]
Voulgaris, Spyridon [3 ]
Argyropoulou, Maria I. [1 ]
机构
[1] Univ Ioannina, Fac Med, Dept Radiol, Ioannina 45110, Greece
[2] Univ Ioannina, Fac Med, Med Phys Lab, Ioannina 45110, Greece
[3] Univ Ioannina, Fac Med, Dept Neurosurg, Ioannina 45110, Greece
关键词
glioblastoma; radiomics; diffusion; perfusion; survival; MULTIFORME; CORRELATE; EDEMA;
D O I
10.3390/curroncol31040165
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Extracting multiregional radiomic features from multiparametric MRI for predicting pretreatment survival in isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) patients is a promising approach. Methods: MRI data from 49 IDH wild-type glioblastoma patients pre-treatment were utilized. Diffusion and perfusion maps were generated, and tumor subregions segmented. Radiomic features were extracted for each tissue type and map. Feature selection on 1862 radiomic features identified 25 significant features. The Cox proportional-hazards model with LASSO regularization was used to perform survival analysis. Internal and external validation used a 38-patient training cohort and an 11-patient validation cohort. Statistical significance was set at p < 0.05. Results: Age and six radiomic features (shape and first and second order) from T1W, diffusion, and perfusion maps contributed to the final model. Findings suggest that a small necrotic subregion, inhomogeneous vascularization in the solid non-enhancing subregion, and edema-related tissue damage in the enhancing and edema subregions are linked to poor survival. The model's C-Index was 0.66 (95% C.I. 0.54-0.80). External validation demonstrated good accuracy (AUC > 0.65) at all time points. Conclusions: Radiomics analysis, utilizing segmented perfusion and diffusion maps, provide predictive indicators of survival in IDH wild-type glioblastoma patients, revealing associations with microstructural and vascular heterogeneity in the tumor.
引用
收藏
页码:2233 / 2243
页数:11
相关论文
共 50 条
  • [1] Synthetic MRI improves radiomics-based glioblastoma survival prediction
    Moya-Saez, Elisa
    Navarro-Gonzalez, Rafael
    Cepeda, Santiago
    Perez-Nunez, Angel
    De Luis-Garcia, Rodrigo
    Aja-Fernandez, Santiago
    Alberola-Lopez, Carlos
    [J]. NMR IN BIOMEDICINE, 2022, 35 (09)
  • [2] Radiomics for Survival Prediction in Glioblastoma (GBM)
    Zhang, H.
    Molitoris, J.
    Tan, S.
    Giacomelli, I.
    Scartoni, D.
    Gzell, C.
    Bhooshan, N.
    Choi, W.
    Lu, W.
    Mehta, M.
    D'Souza, W.
    [J]. MEDICAL PHYSICS, 2016, 43 (06) : 3373 - 3373
  • [3] SERIAL QUANTITATIVE MRI RADIOMICS SIGNATURE FOR PREDICTION OF SURVIVAL IN GLIOBLASTOMA - A PILOT STUDY
    Chen, Cecil
    Martin, Philip
    Koh, Eng-Siew
    Brighi, Caterina
    Aly, Farhannah
    Rai, Robba
    Holloway, Lois
    Metcalfe, Peter
    Pillay, Sugendran
    [J]. NEURO-ONCOLOGY, 2023, 25
  • [4] A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI
    Ammari, Samy
    Salle de Chou, Raoul
    Balleyguier, Corinne
    Chouzenoux, Emilie
    Touat, Mehdi
    Quillent, Arnaud
    Dumont, Sarah
    Bockel, Sophie
    Garcia, Gabriel C. T. E.
    Elhaik, Mickael
    Francois, Bidault
    Borget, Valentin
    Lassau, Nathalie
    Khettab, Mohamed
    Assi, Tarek
    [J]. DIAGNOSTICS, 2021, 11 (11)
  • [5] Multiple Survival Outcome Prediction of Glioblastoma Patients Based on Multiparametric MRI
    Wang, Bin
    Zhang, Shan
    Wu, Xubin
    Li, Ying
    Yan, Yueming
    Liu, Lili
    Xiang, Jie
    Li, Dandan
    Yan, Ting
    [J]. FRONTIERS IN ONCOLOGY, 2021, 11
  • [6] Overall Survival Prediction for Glioblastoma on Pre-treatment MRI Using Robust Radiomics and Priors
    Suter, Yannick
    Knecht, Urspeter
    Wiest, Roland
    Reyes, Mauricio
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 307 - 317
  • [7] MULTIMODAL PET/MRI RADIOMICS AND CLINICAL PARAMETERS FOR OVERALL SURVIVAL PREDICTION IN PATIENTS WITH IDH WILDTYPE GLIOBLASTOMA
    Gutsche, Robin
    Bauer, Elena
    Kocher, Martin
    Werner, Jan-Michael
    Fink, Gereon
    Shah, Nadim
    Langen, Karl-Josef
    Galldiks, Norbert
    Lohmann, Philipp
    [J]. NEURO-ONCOLOGY, 2022, 24 : 184 - 184
  • [8] Radiomics for Survival Analysis and Prediction in Glioblastoma (GBM)-A Preliminary Study
    Zhang, H. H.
    Molitoris, J. K.
    Tan, S.
    Giacomelli, I.
    Scartoni, D.
    Gzell, C.
    Bhooshan, N.
    Choi, W.
    Lu, W.
    D'Souza, W. D.
    Mehta, M. P.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 96 (02): : E106 - E107
  • [9] Multiparametric MRI radiomics model to predict overall survival in Glioblastoma Multiforme
    Kolozsi, E.
    Powell, J.
    Piazzese, C.
    Thomas, S.
    Staffurth, J.
    Spezi, E.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S847 - S848
  • [10] Non-invasive prediction of overall survival time for glioblastoma multiforme patients based on multimodal MRI radiomics
    Zhu, Jingyu
    Ye, Jianming
    Dong, Leshui
    Ma, Xiaofei
    Tang, Na
    Xu, Peng
    Jin, Wei
    Li, Ruipeng
    Yang, Guang
    Lai, Xiaobo
    [J]. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (04) : 1261 - 1274