Malware Prediction Using Tabular Deep Learning Models

被引:0
|
作者
Alzu'bi, Ahmad [1 ]
Abuarqoub, Abdelrahman [2 ]
Abdullah, Mohammad [1 ]
Abu Agolah, Rami [1 ]
Al Ajlouni, Moayyad [1 ]
机构
[1] Jordan Univ Sci & Technol, Dept Comp Sci, Irbid, Jordan
[2] Cardiff Metropolitan Univ, Cardiff Sch Technol, Cardiff, Wales
关键词
Malware prediction; Tabular neural network; Deep learning;
D O I
10.1007/978-3-031-47508-5_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As technology progresses, malware evolves, becoming increasingly perilous and posing a significant challenge in combating cybercriminals. With the abundance of massive data on vulnerabilities, Deep learning techniques present a chance to further boost data and system security. This paper introduces a deep neural network model that automatically generates embedding layers for each categorical feature. Its foundation lies primarily in training neural oblivious decision ensembles and TabNet model on malware data, benefiting from both end-to-end gradient-based optimisation and the power of multi-layer hierarchical representation learning. These deep architectures possess the capacity to learn numerous parameters and identify patterns within large-scale datasets. The proposed models were evaluated using the Microsoft malware prediction dataset, which includes nine million labelled subjects and 83 features. This work marks one of the early attempts to utilise deep tabular architectures for malware prediction. The experimental results demonstrate the model's effectiveness, achieving an accuracy of 66.1% and AUC of 72.8%.
引用
收藏
页码:379 / 389
页数:11
相关论文
共 50 条
  • [1] Revisiting Deep Learning Models for Tabular Data
    Gorishniy, Yury
    Rubachev, Ivan
    Khrulkov, Valentin
    Babenko, Artem
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [2] Malware Detection using Malware Image and Deep Learning
    Choi, Sunoh
    Jang, Sungwook
    Kim, Youngsoo
    Kim, Jonghyun
    2017 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC), 2017, : 1193 - 1195
  • [3] Flood Prediction using Deep Learning Models
    Ali, Muhammad Hafizi Mohd
    Asmai, Siti Azirah
    Abidin, Z. Zainal
    Abas, Zuraida Abal
    Emran, Nurul A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (09) : 972 - 981
  • [4] MALWARE CLASSIFICATION USING DEEP LEARNING
    Lo, Cheng-Hsiang
    Liu, Ta-Che
    Liu, I-Hsien
    Li, Jung-Shian
    Liu, Chuan-Gang
    Li, Chu-Fen
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 126 - 129
  • [5] Explaining customer churn prediction in telecom industry using tabular machine learning models
    Poudel, Sumana Sharma
    Pokharel, Suresh
    Timilsina, Mohan
    MACHINE LEARNING WITH APPLICATIONS, 2024, 17
  • [6] Improving tabular data extraction in scanned laboratory reports using deep learning models
    Li, Yiming
    Wei, Qiang
    Chen, Xinghan
    Li, Jianfu
    Tao, Cui
    Xu, Hua
    JOURNAL OF BIOMEDICAL INFORMATICS, 2024, 159
  • [7] Malware Detection with Malware Images using Deep Learning Techniques
    He, Ke
    Kim, Dong Seong
    2019 18TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS/13TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING (TRUSTCOM/BIGDATASE 2019), 2019, : 95 - 102
  • [8] A survey of malware detection using deep learning
    Bensaoud, Ahmed
    Kalita, Jugal
    Bensaoud, Mahmoud
    Machine Learning with Applications, 2024, 16
  • [9] Android Malware Detection Using Deep Learning
    Elayan, Omar N.
    Mustafa, Ahmad M.
    12TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT) / THE 4TH INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40) / AFFILIATED WORKSHOPS, 2021, 184 : 847 - 852
  • [10] Malware Classification Using Deep Learning Methods
    Cakir, Bugra
    Dogdu, Erdogan
    ACMSE '18: PROCEEDINGS OF THE ACMSE 2018 CONFERENCE, 2018,