Local Influence for the Thin-Plate Spline Generalized Linear Model

被引:0
|
作者
Ibacache-Pulgar, German [1 ,2 ]
Pacheco, Pablo [3 ]
Nicolis, Orietta [4 ]
Uribe-Opazo, Miguel Angel [5 ]
机构
[1] Univ Valparaiso, Inst Stat, Ave Gran Bretana 1111, Valparaiso 2360102, Chile
[2] Univ Valparaiso, Ctr Estudios Atmosfer & Cambio Climat CEACC, Valparaiso 2360102, Chile
[3] Univ Playa Ancha, Direcc Educ Virtual, Ave Guillermo Gonzalez Hontaneda 855, Valparaiso 2360072, Chile
[4] Univ Andres Bello, Fac Ingn, Calle Quillota 980, Vina Del Mar 2520000, Chile
[5] Western Parana State Univ UNIOESTE, Ctr Ciencias Exatas & Tecnol, BR-85819110 Cascavel, Parana, Brazil
关键词
exponential family; smoothing spline; penalized likelihood function; weighted back-fitting algorithm; diagnostics measures; INFLUENCE DIAGNOSTICS; BETA REGRESSION;
D O I
10.3390/axioms13060346
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Thin-Plate Spline Generalized Linear Models (TPS-GLMs) are an extension of Semiparametric Generalized Linear Models (SGLMs), because they allow a smoothing spline to be extended to two or more dimensions. This class of models allows modeling a set of data in which it is desired to incorporate the non-linear joint effects of some covariates to explain the variability of a certain variable of interest. In the spatial context, these models are quite useful, since they allow the effects of locations to be included, both in trend and dispersion, using a smooth surface. In this work, we extend the local influence technique for the TPS-GLM model in order to evaluate the sensitivity of the maximum penalized likelihood estimators against small perturbations in the model and data. We fit our model through a joint iterative process based on Fisher Scoring and weighted backfitting algorithms. In addition, we obtained the normal curvature for the case-weight perturbation and response variable additive perturbation schemes, in order to detect influential observations on the model fit. Finally, two data sets from different areas (agronomy and environment) were used to illustrate the methodology proposed here.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Generalized Thin-Plate Spline Warps
    Adrien Bartoli
    Mathieu Perriollat
    Sylvie Chambon
    [J]. International Journal of Computer Vision, 2010, 88 : 85 - 110
  • [2] Generalized Thin-Plate Spline Warps
    Bartoli, Adrien
    Perriollat, Mathieu
    Chambon, Sylvie
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (01) : 85 - 110
  • [3] Generalized Thin-Plate Spline warps
    Bartoli, Adrien
    Perriollat, Mathieu
    Chambon, Sylvie
    [J]. 2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 220 - +
  • [4] Thin-Plate Spline Motion Model for Image Animation
    Zhao, Jian
    Zhang, Hui
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 3647 - 3656
  • [5] A Thin-Plate Spline Calibration model for fingerprint sensor interoperability
    Ross, Arun
    Nadgir, Rohan
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2008, 20 (08) : 1097 - 1110
  • [6] Thin-plate spline analysis of mandibular growth
    Franchi, L
    Baccetti, T
    McNamara, JA
    [J]. ANGLE ORTHODONTIST, 2001, 71 (02) : 83 - 89
  • [7] Weighted thin-plate spline image denoising
    Kaspar, R
    Zitová, B
    [J]. PATTERN RECOGNITION, 2003, 36 (12) : 3027 - 3030
  • [8] THIN-PLATE SPLINE QUADRATURE OF GEODETIC INTEGRALS
    VANGYSEN, H
    [J]. BULLETIN GEODESIQUE, 1994, 68 (03): : 173 - 179
  • [9] Fingerprint Matching Using Correlation and Thin-Plate Spline Deformation Model
    Li, Jiang
    Tulyakov, Sergey
    Zhang, Zhi
    Govindaraju, Venu
    [J]. 2008 IEEE SECOND INTERNATIONAL CONFERENCE ON BIOMETRICS: THEORY, APPLICATIONS AND SYSTEMS (BTAS), 2008, : 352 - 355
  • [10] Fake finger detection based on thin-plate spline distortion model
    Zhang, Yangyang
    Tian, Jie
    Chen, Xinjian
    Yang, Xin
    Shi, Peng
    [J]. ADVANCES IN BIOMETRICS, PROCEEDINGS, 2007, 4642 : 742 - +