Structural disorder determines capacitance in nanoporous carbons

被引:22
|
作者
Liu, Xinyu [1 ]
Lyu, Dongxun [1 ]
Merlet, Celine [2 ,3 ]
Leesmith, Matthew J. A. [4 ]
Hua, Xiao [4 ]
Xu, Zhen [1 ]
Grey, Clare P. [1 ]
Forse, Alexander C. [1 ]
机构
[1] Univ Cambridge, Yusuf Hamied Dept Chem, Cambridge CB2 1EW, England
[2] Univ Toulouse, Univ Toulouse 3 Paul Sabatier, CIRIMAT, Toulouse INP,CNRS, 118 Route Narbonne, F-31062 Toulouse 9, France
[3] Reseau Stockage Electrochim Energie RS2E, Federat Rech CNRS 3459, F-80039 Amiens, France
[4] Univ Lancaster, Dept Chem, Lancaster LA1 4YB, England
基金
欧洲研究理事会;
关键词
MOLECULAR-FORCE FIELD; SUPERCAPACITOR ELECTRODES; POROUS CARBONS; PORE-SIZE; DYNAMICS; GRAPHENE; INSIGHTS; STORAGE; SURFACE;
D O I
10.1126/science.adn6242
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The difficulty in characterizing the complex structures of nanoporous carbon electrodes has led to a lack of clear design principles with which to improve supercapacitors. Pore size has long been considered the main lever to improve capacitance. However, our evaluation of a large series of commercial nanoporous carbons finds a lack of correlation between pore size and capacitance. Instead, nuclear magnetic resonance spectroscopy measurements and simulations reveal a strong correlation between structural disorder in the electrodes and capacitance. More disordered carbons with smaller graphene-like domains show higher capacitances owing to the more efficient storage of ions in their nanopores. Our findings suggest ways to understand and exploit disorder to achieve highly energy-dense supercapacitors.
引用
收藏
页码:321 / 325
页数:5
相关论文
共 50 条
  • [1] Overthrow traditional cognition: Structural disorder determines capacitance of nanoporous carbons
    Xu, He
    Zhu, Yingzheng
    MATTER, 2024, 7 (08) : 2783 - 2785
  • [2] Raman Spectroscopy Measurements Support Disorder-Driven Capacitance in Nanoporous Carbons
    Liu, Xinyu
    Choi, Jaehoon
    Xu, Zhen
    Grey, Clare P.
    Fleischmann, Simon
    Forse, Alexander C.
    Journal of the American Chemical Society, 2024, 146 (45) : 30748 - 30752
  • [3] The electrochemical capacitance of nanoporous carbons in aqueous and ionic liquids
    Liu, Hongtao
    Zhu, Guoyi
    JOURNAL OF POWER SOURCES, 2007, 171 (02) : 1054 - 1061
  • [4] Exploring the effect of ultramicropore distribution on gravimetric capacitance of nanoporous carbons
    Barczak, Mariusz
    Elsayed, Yehya
    Jagiello, Jacek
    Bandosz, Teresa J.
    ELECTROCHIMICA ACTA, 2018, 275 : 236 - 247
  • [5] Investigating the effects of activating agent morphology on the porosity and related capacitance of nanoporous carbons
    Herou, Servann
    Crespo, Maria
    Titirici, Magdalena
    CRYSTENGCOMM, 2020, 22 (09) : 1560 - 1567
  • [6] Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes
    Raymundo-Pinero, E.
    Kierzek, K.
    Machnikowski, J.
    Beguin, F.
    CARBON, 2006, 44 (12) : 2498 - 2507
  • [7] Pseudo-capacitance of nanoporous carbons in pyrrolidinium-based protic ionic liquids
    Mysyk, R.
    Raymundo-Pinero, E.
    Anouti, M.
    Lemordant, D.
    Beguin, F.
    ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (03) : 414 - 417
  • [8] Structural characterization and electric double layer capacitance of template carbons
    Kodama, M
    Yamashita, J
    Soneda, Y
    Hatori, H
    Nishimura, S
    Kamegawa, K
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2004, 108 (1-2): : 156 - 161
  • [9] Characterization of nanoporous carbons
    Nguyen, T. X.
    Bhatia, S. K.
    CHARACTERIZATION OF POROUS SOLIDS VII - PROCEEDINGS OF THE 7TH INTERNATIONAL SYMPOSIUM ON THE CHARACTERIZATION OF POROUS SOLIDS (COPS-VII), AIX-EN-PROVENCE, FRANCE, 26-28 MAY 2005, 2006, 160 : 63 - 70
  • [10] The change of structural parameters of nanoporous activated carbons under the influence of ultrasonic radiation
    Vadym Ptashnyk
    Ihor Bordun
    Myroslav Malovanyy
    Piotr Chabecki
    Tymofii Pieshkov
    Applied Nanoscience, 2020, 10 : 4891 - 4899