BarlowRL: Barlow Twins for Data-Efficient Reinforcement Learning

被引:0
|
作者
Cagatan, Omer Veysel [1 ]
Akgun, Baris [1 ]
机构
[1] Koc Univ, Istanbul, Turkiye
关键词
Deep Reinforcement Learning; Self-supervised Learning; Data efficiency; LEVEL; GO;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces BarlowRL, a data-efficient reinforcement learning agent that combines the Barlow Twins self-supervised learning framework with DER (Data-Efficient Rainbow) algorithm. BarlowRL outperforms both DER and its contrastive counterpart CURL on the Atari 100k benchmark. BarlowRL avoids dimensional collapse by enforcing information spread to the whole space. This helps RL algorithms to utilize uniformly spread state representation that eventually results in a remarkable performance. The integration of Barlow Twins with DER enhances data efficiency and achieves superior performance in the RL tasks. BarlowRL demonstrates the potential of incorporating self-supervised learning techniques, especially that of non-contrastive objectives, to improve RL algorithms.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Data-Efficient Hierarchical Reinforcement Learning
    Nachum, Ofir
    Gu, Shixiang
    Lee, Honglak
    Levine, Sergey
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [2] Data-Efficient Reinforcement Learning for Malaria Control
    Zou, Lixin
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 507 - 513
  • [3] Pretraining Representations for Data-Efficient Reinforcement Learning
    Schwarzer, Max
    Rajkumar, Nitarshan
    Noukhovitch, Michael
    Anand, Ankesh
    Charlin, Laurent
    Hjelm, Devon
    Bachman, Philip
    Courville, Aaron
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [4] EqR: Equivariant Representations for Data-Efficient Reinforcement Learning
    Mondal, Arnab Kumar
    Jain, Vineet
    Siddiqi, Kaleem
    Ravanbakhsh, Siamak
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [5] Data-Efficient Pipeline for Offline Reinforcement Learning with Limited Data
    Nie, Allen
    Flet-Berliac, Yannis
    Jordan, Deon R.
    Steenbergen, William
    Brunskill, Emma
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [6] Data-Efficient Reinforcement Learning for Variable Impedance Control
    Anand, Akhil S.
    Kaushik, Rituraj
    Gravdahl, Jan Tommy
    Abu-Dakka, Fares J.
    [J]. IEEE ACCESS, 2024, 12 : 15631 - 15641
  • [7] Data-Efficient Offline Reinforcement Learning with Approximate Symmetries
    Angelotti, Giorgio
    Drougard, Nicolas
    Chanel, Caroline P. C.
    [J]. AGENTS AND ARTIFICIAL INTELLIGENCE, ICAART 2023, 2024, 14546 : 164 - 186
  • [8] Optimistic Sampling Strategy for Data-Efficient Reinforcement Learning
    Zhao, Dongfang
    Liu, Jiafeng
    Wu, Rui
    Cheng, Dansong
    Tang, Xianglong
    [J]. IEEE ACCESS, 2019, 7 : 55763 - 55769
  • [9] Concurrent Credit Assignment for Data-efficient Reinforcement Learning
    Dauce, Emmanuel
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [10] Data-Efficient Reinforcement Learning for Complex Nonlinear Systems
    Donge, Vrushabh S.
    Lian, Bosen
    Lewis, Frank L.
    Davoudi, Ali
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (03) : 1391 - 1402