Simultaneous Inference Using Multiple Marginal Models

被引:0
|
作者
Hothorn, Ludwig A. [1 ]
Ritz, Christian [2 ]
Schaarschmidt, Frank [3 ]
Jensen, Signe M. [4 ]
Ristl, Robin [5 ]
机构
[1] Leibniz Univ Hannover, Hannover, Germany
[2] Univ Southern Denmark, Natl Inst Publ Hlth, Fac Hlth Sci, Copenhagen, Denmark
[3] Leibniz Univ Hannover, Inst Cell Biol, Hannover, Germany
[4] Univ Copenhagen, Dept Plant & Environm Sci, Taastrup, Denmark
[5] Med Univ Vienna, Ctr Med Data Sci, Vienna, Austria
关键词
CRAN packages; maxT-test; multiple marginal models; simultaneous inference; END-POINT; TESTS;
D O I
10.1002/pst.2428
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
This tutorial describes single-step low-dimensional simultaneous inference with a focus on the availability of adjusted p values and compatible confidence intervals for more than just the usual mean value comparisons. The basic idea is, first, to use the influence of correlation on the quantile of the multivariate t-distribution: the higher the less conservative. In addition, second, the estimability of the correlation matrix using the multiple marginal models approach (mmm) using multiple models in the class of linear up to generalized linear mixed models. The underlying maxT-test using mmm is discussed by means of several real data scenarios using selected R packages. Surprisingly, different features are highlighted, among them: (i) analyzing different-scaled, correlated, multiple endpoints, (ii) analyzing multiple correlated binary endpoints, (iii) modeling dose as qualitative factor and/or quantitative covariate, (iv) joint consideration of several tuning parameters within the poly-k trend test, (v) joint testing of dose and time, (vi) considering several effect sizes, (vii) joint testing of subgroups and overall population in multiarm randomized clinical trials with correlated primary endpoints, (viii) multiple linear mixed effect models, (ix) generalized estimating equations, and (x) nonlinear regression models.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Simultaneous inference for multiple marginal generalized estimating equation models
    Ristl, Robin
    Hothorn, Ludwig
    Ritz, Christian
    Posch, Martin
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (06) : 1746 - 1762
  • [2] Simultaneous Inference of Multiple Binary Endpoints in Biomedical Research: Small Sample Properties of Multiple Marginal Models and a Resampling Approach
    Budig, Soeren
    Jung, Klaus
    Hasler, Mario
    Schaarschmidt, Frank
    [J]. BIOMETRICAL JOURNAL, 2024, 66 (05)
  • [3] Simultaneous Inference of Multiple Binary Endpoints in Biomedical Research: Small Sample Properties of Multiple Marginal Models and a Resampling Approach
    Budig, Sören
    Jung, Klaus
    Hasler, Mario
    Schaarschmidt, Frank
    [J]. Biometrical Journal, 5
  • [4] A comparison of approaches for simultaneous inference of fixed effects for multiple outcomes using linear mixed models
    Jensen, Signe M.
    Ritz, Christian
    [J]. STATISTICS IN MEDICINE, 2018, 37 (16) : 2474 - 2486
  • [5] Marginal and simultaneous predictive classification using stratified graphical models
    Nyman, Henrik
    Xiong, Jie
    Pensar, Johan
    Corander, Jukka
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2016, 10 (03) : 305 - 326
  • [6] Marginal and simultaneous predictive classification using stratified graphical models
    Henrik Nyman
    Jie Xiong
    Johan Pensar
    Jukka Corander
    [J]. Advances in Data Analysis and Classification, 2016, 10 : 305 - 326
  • [7] Simultaneous small-sample comparisons in longitudinal or multi-endpoint trials using multiple marginal models
    Pallmann, Philip
    Ritz, Christian
    Hothorn, Ludwig A.
    [J]. STATISTICS IN MEDICINE, 2018, 37 (09) : 1562 - 1576
  • [8] Marginal structural models and causal inference in epidemiology
    Robins, JM
    Hernán, MA
    Brumback, B
    [J]. EPIDEMIOLOGY, 2000, 11 (05) : 550 - 560
  • [9] Simultaneous inference in general parametric models
    Hothorn, Torsten
    Bretz, Frank
    Westfall, Peter
    [J]. BIOMETRICAL JOURNAL, 2008, 50 (03) : 346 - 363
  • [10] Partially marginal structural models for causal inference.
    Joffe, M
    Santanna, J
    Feldman, H
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2001, 153 (11) : S261 - S261