Vortex-Induced Vibration of Long Suspenders of a Long-Span Suspension Bridge and Its Effect on Local Deck Acceleration Based on Field Monitoring

被引:2
|
作者
Su, Xun [1 ]
Mao, Jianxiao [1 ]
Wang, Hao [1 ]
Gao, Hui [1 ]
Guo, Xiaoming [1 ]
Zong, Hai [2 ,3 ]
机构
[1] Southeast Univ, Key Lab Concrete & Prestressed Concrete Struct, Minist Educ, Nanjing 211189, Peoples R China
[2] Southeast Univ, Sch Transportat, Nanjing 211189, Peoples R China
[3] Nanjing Highway Dev Grp Co Ltd, Nanjing 210002, Peoples R China
来源
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
CIRCULAR-CYLINDER; REYNOLDS-NUMBER; FLOW; FREQUENCY; STIFFNESS;
D O I
10.1155/2024/1472626
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
As the main structural component, the possibility of wind-induced vibration, especially vortex-induced vibrations (VIVs), is greatly increased due to the shape and structural characteristics of the long suspenders. To investigate the full-scale wind-induced vibration of the long suspenders of a long-span suspension bridge with a main span of 1418 m, the long-term vibration-based monitoring system was established. Based on the recorded structural health monitoring (SHM) data, the corresponding wind conditions and the vibration characteristics of long suspenders with different diameters and tensions are investigated. Furthermore, modal parameters including frequencies and damping ratios of long suspenders are identified and tracked during the VIV period. The relationship between the shedding frequency of long suspenders and the corresponding wind speed is studied. Results show that the VIVs with frequencies ranging from 8 Hz to 20 Hz were observed continuously across a wide range of wind speeds in both sets of long suspenders. Due to the relatively low modal damping, significant vortex characteristics and lock-in phenomena can be expected on the long suspenders. A new frequency-adjustable Stockbridge damper is employed to suppress multimodal VIVs in the long suspenders. The effectiveness of Stockbridge damper is verified through field application and comparative analysis. Finally, the effect of long suspender VIVs on local deck vibration is discussed, and it is clarified that the bridge deck vibration is mainly caused by multimodal VIVs of the long suspenders, rather than by external loads such as vehicles and wind. The study endeavors to provide a case to progress the identification, assessment, and control of long suspender VIVs in similar long-span bridges.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Field monitoring and validation of vortex-induced vibrations of a long-span suspension bridge
    Li, Hui
    Laima, Shujin
    Zhang, Qiangqiang
    Li, Na
    Liu, Zhiqiang
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2014, 124 : 54 - 67
  • [2] Prediction analysis of vortex-induced vibration of long-span suspension bridge based on monitoring data
    Xu, Shiqiao
    Ma, Rujin
    Wang, Dalei
    Chen, Airong
    Tian, Hao
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2019, 191 : 312 - 324
  • [3] Case study of vortex-induced vibration and mitigation mechanism for a long-span suspension bridge
    Ge, Yaojun
    Zhao, Lin
    Cao, Jinxin
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2022, 220
  • [4] Vortex-induced vibration analysis of a long-span arch bridge
    Tang, Chunping
    Zhang, Liangliang
    International Journal of Applied Mathematics and Statistics, 2013, 49 (19): : 324 - 332
  • [5] Study on The vortex-induced vibration of a long-span arch bridge
    Tang, Chunping
    Zhang, Liangliang
    MATERIALS SCIENCE, CIVIL ENGINEERING AND ARCHITECTURE SCIENCE, MECHANICAL ENGINEERING AND MANUFACTURING TECHNOLOGY, PTS 1 AND 2, 2014, 488-489 : 681 - +
  • [6] Vortex-induced vibration measurement of a long-span suspension bridge through noncontact sensing strategies
    Zhang, Jian
    Zhou, Liming
    Tian, Yongding
    Yu, Shanshan
    Zhao, Wenju
    Cheng, Yuyao
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2022, 37 (12) : 1617 - 1633
  • [7] Cause investigation of high-mode vortex-induced vibration in a long-span suspension bridge
    Hwang, You Chan
    Kim, Sunjoong
    Kim, Ho-Kyung
    STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2020, 16 (01) : 84 - 93
  • [8] Control of Vortex-Induced Vibration of a Long-Span Bridge by Inclined Railings
    Xin, Dabo
    Zhan, Jian
    Zhang, Hongfu
    Ou, Jinping
    JOURNAL OF BRIDGE ENGINEERING, 2021, 26 (12)
  • [9] Reliability Evaluation of Vortex-Induced Vibration for a Long-Span Arch Bridge
    Li, Lingyao
    Wu, Teng
    He, Xuhui
    Hao, Jianming
    Wang, Hanfeng
    Xu, Hanyong
    JOURNAL OF BRIDGE ENGINEERING, 2018, 23 (05)
  • [10] Evaluation and Early Warning of Vortex-Induced Vibration of Existed Long-Span Suspension Bridge Using Multisource Monitoring Data
    Zhao, Han-Wei
    Ding, You-Liang
    Li, Ai-Qun
    Liu, Xing-Wang
    Chen, Bin
    Lu, Jun
    JOURNAL OF PERFORMANCE OF CONSTRUCTED FACILITIES, 2021, 35 (03)