Graph Anomaly Detection via Multi-Scale Contrastive Learning Networks with Augmented View

被引:0
|
作者
Duan, Jingcan [1 ]
Wang, Siwei [1 ]
Zhang, Pei [1 ]
Zhu, En [1 ]
Hu, Jingtao [1 ]
Jin, Hu [1 ]
Liu, Yue [1 ]
Dong, Zhibin [1 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Changsha, Peoples R China
来源
THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 6 | 2023年
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph anomaly detection (GAD) is a vital task in graph-based machine learning and has been widely applied in many real-world applications. The primary goal of GAD is to capture anomalous nodes from graph datasets, which evidently deviate from the majority of nodes. Recent methods have paid attention to various scales of contrastive strategies for GAD, i.e., node-subgraph and node-node contrasts. However, they neglect the subgraph-subgraph comparison information which the normal and abnormal subgraph pairs behave differently in terms of embeddings and structures in GAD, resulting in sub-optimal task performance. In this paper, we fulfill the above idea in the proposed multi-view multi-scale contrastive learning framework with subgraph-subgraph contrast for the first practice. To be specific, we regard the original input graph as the first view and generate the second view by graph augmentation with edge modifications. With the guidance of maximizing the similarity of the subgraph pairs, the proposed subgraph-subgraph contrast contributes to more robust subgraph embeddings despite of the structure variation. Moreover, the introduced subgraph-subgraph contrast cooperates well with the widely-adopted node-subgraph and node-node contrastive counterparts for mutual GAD performance promotions. Besides, we also conduct sufficient experiments to investigate the impact of different graph augmentation approaches on detection performance. The comprehensive experimental results well demonstrate the superiority of our method compared with the state-of-the-art approaches and the effectiveness of the multi-view subgraph pair contrastive strategy for the GAD task. The source code is released at https://github.com/FelixDJC/GRADATE.
引用
收藏
页码:7459 / 7467
页数:9
相关论文
共 50 条
  • [1] ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning
    Jin, Ming
    Liu, Yixin
    Zheng, Yu
    Chi, Lianhua
    Li, Yuan-Fang
    Pan, Shirui
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3122 - 3126
  • [2] Normality Learning-based Graph Anomaly Detection via Multi-Scale Contrastive Learning
    Duan, Jingcan
    Zhang, Pei
    Wang, Siwei
    Hu, Jingtao
    Jin, Hu
    Zhang, Jiaxin
    Zhou, Haifang
    Liu, Xinwang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 7502 - 7511
  • [3] Graph Anomaly Detection via Diffusion Enhanced Multi-View Contrastive Learning
    Kong, Xiangjie
    Liu, Jin
    Li, Huan
    Zhang, Chenwei
    Du, Jiaxin
    Guo, Dongyan
    Shen, Guojiang
    KNOWLEDGE-BASED SYSTEMS, 2025, 311
  • [4] GPS: graph contrastive learning via multi-scale augmented views from adversarial pooling
    Ju, Wei
    Gu, Yiyang
    Mao, Zhengyang
    Qiao, Ziyue
    Qin, Yifang
    Luo, Xiao
    Xiong, Hui
    Zhang, Ming
    SCIENCE CHINA-INFORMATION SCIENCES, 2025, 68 (01)
  • [5] GPS: graph contrastive learning via multi-scale augmented views from adversarial pooling
    Wei JU
    Yiyang GU
    Zhengyang MAO
    Ziyue QIAO
    Yifang QIN
    Xiao LUO
    Hui XIONG
    Ming ZHANG
    Science China(Information Sciences), 2025, 68 (01) : 145 - 158
  • [6] Enhancing Multi-view Contrastive Learning for Graph Anomaly Detection
    Lu, Qingcheng
    Wu, Nannan
    Zhao, Yiming
    Wang, Wenjun
    Zu, Quannan
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT VI, DASFAA 2024, 2024, 14855 : 236 - 251
  • [7] Robust log anomaly detection based on contrastive learning and multi-scale MASS
    Wang, Xuejie
    Cao, Qilei
    Wang, Qiaozheng
    Cao, Zhiying
    Zhang, Xiuguo
    Wang, Peipeng
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (16): : 17491 - 17512
  • [8] Robust log anomaly detection based on contrastive learning and multi-scale MASS
    Xuejie Wang
    Qilei Cao
    Qiaozheng Wang
    Zhiying Cao
    Xiuguo Zhang
    Peipeng Wang
    The Journal of Supercomputing, 2022, 78 : 17491 - 17512
  • [9] Deep image clustering with contrastive learning and multi-scale graph convolutional networks
    Xu, Yuankun
    Huang, Dong
    Wang, Chang-Dong
    Lai, Jian-Huang
    PATTERN RECOGNITION, 2024, 146
  • [10] Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning
    Jin, Ming
    Zheng, Yizhen
    Li, Yuan-Fang
    Gong, Chen
    Zhou, Chuan
    Pan, Shirui
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 1477 - 1483