Small-scale roughness entraps water and controls underwater adhesion

被引:1
|
作者
Kumar, Nityanshu [1 ]
Dalvi, Siddhesh [1 ]
Sumant, Anirudha V. [2 ]
Pastewka, Lars [3 ,4 ]
Jacobs, Tevis D. B. [5 ]
Dhinojwala, Ali [1 ]
机构
[1] Univ Akron, Sch Polymer Sci & Polymer Engn, Akron, OH 44325 USA
[2] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[3] Univ Freiburg, Dept Microsyst Engn, D-79110 Freiburg, Germany
[4] Univ Freiburg, Freiburg Ctr Interact Mat & Bioinspired Technol, Cluster Excellence LivMatS, D-79110 Freiburg, Germany
[5] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 32期
基金
美国国家科学基金会;
关键词
VIBRATIONAL SPECTROSCOPY; SURFACE; CONTACT; ENERGY; POLY(DIMETHYLSILOXANE); HYDROGEN;
D O I
10.1126/sciadv.adn8343
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
While controlling underwater adhesion is critical for designing biological adhesives and in improving the traction of tires, haptics, or adhesives for health monitoring devices, it is hindered by a lack of fundamental understanding of how the presence of trapped water impedes interfacial bonding. Here, by using well-characterized polycrystal diamond surfaces and soft, nonhysteretic, low-surface energy elastomers, we show a reduction in adhesion during approach and four times higher adhesion during retraction as compared to the thermodynamic work of adhesion. Our findings reveal how the loading phase of contact is governed by the entrapment of water by ultrasmall (10-nanometer-scale) surface features. In contrast, the same nanofeatures that reduce adhesion during approach serve to increase adhesion during separation. The explanation for this counterintuitive result lies in the incompressibility-inextensibility of trapped water and the work needed to deform the polymer around water pockets. Unlike the well-known viscoelastic contribution to adhesion, this science unlocks strategies for tailoring surface topography to enhance underwater adhesion.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Small-scale underwater explosion in shallow-water tank
    Nowak, P. R.
    Szlachta, A.
    Gajewski, T.
    Peksa, P.
    Sielicki, P. W.
    [J]. OCEAN ENGINEERING, 2023, 288
  • [2] Controls on sublithospheric small-scale convection
    Huang, JS
    Zhong, SJ
    van Hunen, J
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2003, 108 (B8)
  • [3] Small-scale roughness effects on laminar separation
    Huebsch, WW
    Rothmayer, AP
    [J]. THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2003, 17 (02) : 97 - 112
  • [4] Small-Scale Roughness Effects on Laminar Separation
    W.W. Huebsch
    A.P. Rothmayer
    [J]. Theoretical and Computational Fluid Dynamics, 2003, 17 : 97 - 112
  • [5] Impact of Small-Scale Geometric Roughness on Wetting Behavior
    Kumar, Vaibhaw
    Errington, Jeffrey R.
    [J]. LANGMUIR, 2013, 29 (38) : 11815 - 11820
  • [6] Phase distribution of small-scale ocean surface roughness
    Hwang, PA
    [J]. JOURNAL OF PHYSICAL OCEANOGRAPHY, 2002, 32 (11) : 2977 - 2987
  • [7] A METHOD FOR SPATIALLY AVERAGING SMALL-SCALE BOTTOM ROUGHNESS
    PAOLA, C
    [J]. MARINE GEOLOGY, 1985, 66 (1-4) : 291 - 301
  • [8] SMALL-SCALE ROUGHNESS EFFECTS ON THERMAL IR SPECTRA
    Balick, L. K.
    Danilina, I.
    Gillespie, A.
    Jolin, J.
    Mushkin, A.
    [J]. 100 YEARS ISPRS ADVANCING REMOTE SENSING SCIENCE, PT 2, 2010, 38 : 56 - 61
  • [9] On a small-scale roughness of the core-mantle boundary
    Narteau, C
    Le Mouël, JL
    Poirier, JP
    Sepúlveda, E
    Shnirman, M
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 2001, 191 (1-2) : 49 - 60
  • [10] Hydrodynamic and tidal controls of small-scale phytoplankton patchiness
    Seuront, L
    [J]. MARINE ECOLOGY PROGRESS SERIES, 2005, 302 : 93 - 101